[pt] O objetivo desta dissertação é analisar a relevância de um conjunto inicial
de 18 atributos tais como Despesas Financeiras, Receitas e Liquidez Corrente,
dentre outros, em relação à classificação de risco (grau) de uma empresa:
especulação ou investimento, conforme classificação realizada pela agência
Standard & Poor s. Avaliou-se comparativamente a eficácia de métodos lineares e
não-lineares de seleção de atributos tais como Análise de Componentes
Principais (PCA), Informação Mútua (IM) e Informação Mútua para Seleção de
Atributos com Distribuição Uniforme (MIFS-U) e métodos lineares e não-lineares
de predição tais como Regressão Múltipla Linear, Discriminante Linear de Fisher
e Redes Neurais. Identificou-se através destes métodos e de conhecimento a
priori, um conjunto de cinco fatores (atributos) capaz de estimar com alto índice
de eficácia se o grau de uma empresa é de investimento ou especulação, a saber:
Lucro Líquido, EBIT, Receitas, Valor de Mercado e Setor. / [en] The purpose of this thesis is to analyze and rank the
relevancy of 18
variables to S&P corporate ratings grades assignment.
Beyond, we predict
(classify) the Corporate Grades into two groups -
Investment or Speculative. To achieve this goal, we
applied and compared linear
and non-linear Statistics models and Machine Learning
Techniques (Multiple
Linear Regression, Linear Fisher´s Discriminant, Neural
Networks MLP) and
feature selection methods such as Principal Component
Analysis (PCA),
Correlation, Mutual Information (MI) and Mutual
Information for Features
Selection under Uniform Distribution MIFS-U). The 17 of
the initial set of 18
variables are financial variables such as Net Income,
Interest Expense and Market
Capitalization but one was the corporation´s Sector.
Combining linear and nonlinear
models and a priori knowledge, we identified a subset of
five features (Net
Income, EBIT, Total Revenues, Market Capitalization and
Sector) that together
reached up to 94.32% of success rate for the S&P grade
prediction.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:9530 |
Date | 15 February 2007 |
Creators | ANDRE SIH |
Contributors | CARLOS KUBRUSLY |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0029 seconds