[pt] Os aços inoxidáveis duplex (AID) possuem uma estrutura mista de Delta-ferrita e Gamma-austenita em frações de volume aproximadamente iguais e combinam muitas das propriedades benéficas das duas fases, a ferrita fornece alta resistência mecânica e resistência à corrosão, enquanto que a austenita aumenta a
ductilidade e a resistência à corrosão uniforme. Uma vantagem dos AID é a resistência à trincas de solidificação, que está associado à soldagem. Pela combinação de propriedades, esses aços são amplamente utilizados na indústria de equipamentos químicos, petróleo e gás, plantas de dessalinização, controle de poluição, usinas elétricas e, mais recentemente, em aplicações off-shore como na
extração de petróleo em águas profundas. No entanto, a exposição destes aços a temperaturas elevadas entre 600 graus celsius e 1000 graus celsius, que ocorre durante a soldagem por fusão resulta na precipitação de diferentes compostos, sendo os mais frequentemente encontrados a fase sigma, a fase x, os nitretos de cromo e os carbonetos que reduzem tanto a resistência mecânica quanto a resistência a
corrosão. Este trabalho teve como objetivo simular fisicamente as microestruturas da zona termicamente afetada (ZTA) dos AIDs UNS S32304, S32205 e S32750. De modo a obter diferentes ZTAs foi utilizado o simulador termo-mecânico Gleeble, por meio deste simulador foram aplicados vários aportes de calor que
permitiram avaliar a evolução microestrutural e as propriedades mecânicas destas zonas. As temperaturas utilizadas nas simulações físicas foram determinadas por meio do software Thermo-Calc assegurando assim as faixas de transformações microestruturais. A temperatura de pico utilizada foi de 1350 graus celsius por 2 segundos; seguida de resfriamento em acordo com o modelo Rykalin-2D, onde um grupo de amostras sofreu resfriamento até alcançar a temperatura de 500 graus celsius seguido de uma têmpera em água e um outro grupo até 250 graus celsius seguido de uma têmpera. Este procedimento foi adotado de modo a identificar a influência dos aportes de calor e as taxas de resfriamento na frações volumétricas das fases obtidas. Foi observado um aumento da fração volumétrica da austenita, assim como um aumento do tamanho de grão da ferrita e um crescimento nos grãos da austenita, em função do aumento do aporte de calor durante as simulações físicas das ZTAs. Estas variações microestruturais ocasionaram o decréscimo da resistência mecânica nos três AID avaliados quando comparados ao respectivo metal de base. / [en] The duplex stainless steels (DSS) have a structure that consist of approximately equivalent amounts of delta-austenita and gamma-ferrite, exhibit excellent properties combinations of both phases. DSS combine the high strength and resistance to stress corrosion cracking come from ferrite, whereas the austenite
phase influences ductility and uniform corrosion resistance. The advantage of DSS is solidification cracking resistance; it is associated to welding processes. The application of DSS have being increasingly used as structural material in various industrial sectors, such as chemical, petrochemical, pulp and paper, power
generation, desalination, oil and gas, for the constructions in marine and chemical industries and most recently for manufacturing components used in off-shore oil platforms for oil extraction in deep water. However, the exposure of these steels to high temperatures between 600 celsius degrees and 1000 celsius degrees, which occurs during fusion welding results in different compounds precipitation, the most frequently encountered being the sigma phase, the X phase, the chromium nitrides and carbides
which reduce both mechanical strength and corrosion resistance. The aim of this work was to simulate physically the Heat Affected Zone (HAZ) microstructures in DSS UNS S32304, S32205 and S32750. In order to obtain different HAZ the Gleeble system was used. Several heat inputs were applied through this simulator, which allowed evaluate the microstructural evolution and the mechanical properties of these zones. The temperatures used in physical simulations were determined by Thermo-Calc Software, this supplied the microstructural transformations temperature ranges. The peak temperature used was 1350 celsius degrees for 2 seconds; followed by cooling in accordance with the Rykalin-2D model; one
sample set was cooled to 500 celsius degrees followed by water quenching, and the second
sample set was cooled to 250 celsius degrees followed by quenching. This procedure was adopted in order to identify the effect of the final temperature on the phases volume fraction obtained. An increase in the austenite volume fraction, as well as an increase in the ferrite grain size and a widening in the austenite grains, due to the increase of the heat input during the physical simulations of the ZTAs was
observed. These microstructural variations caused the tensile strength and Yield strength decreasing in HAZ of DSS evaluated when these zones were compared to the respective base metal.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:32940 |
Date | 06 February 2018 |
Creators | LILIA OLAYA LUENGAS |
Contributors | IVANI DE SOUZA BOTT |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | English |
Type | TEXTO |
Page generated in 0.018 seconds