Return to search

[en] EVALUATING THE IMPACT OF THE INFLATION FACTORS GENERATION FOR THE ENSEMBLE SMOOTHER WITH MULTIPLE DATA ASSIMILATION / [pt] INVESTIGANDO O IMPACTO DA GERAÇÃO DOS FATORES DE INFLAÇÃO PARA O ENSEMBLE SMOOTHER COM MÚLTIPLA ASSIMILAÇÃO DE DADOS

[pt] O ensemble smoother with multiple data assimilation (ES-MDA) se tornou
um poderoso estimador de parâmetros. A principal ideia do ES-MDA
é assimilar os mesmos dados com a matriz de covariância dos erros dos dados
inflada. Na implementação original do ES-MDA, os fatores de inflação e
o número de assimilações são escolhidos a priori. O único requisito é que a
soma dos inversos de tais fatores seja igual a um. Naturalmente, escolhendo-os
iguais ao número de assimilações cumpre este requerimento. Contudo, estudos
recentes mostraram uma relação entre a equação de atualização do ES-MDA
com a solução para o problema inverso regularizado. Consequentemente, tais
elementos agem como os parâmetros de regularização em cada assimilação.
Assim, estudos propuseram técnicas para gerar tais fatores baseadas no princípio
da discrepância. Embora estes estudos tenham propostos técnicas, um
procedimento ótimo para gerar os fatores de inflação continua um problema
em aberto. Mais ainda, tais estudos divergem em qual método de regularização
é sufiente para produzir os melhores resultados para o ES-MDA. Portanto,
nesta tese é abordado o problema de gerar os fatores de inflação para o ESMDA
e suas influências na performance do método. Apresentamos uma análise
numérica do impacto de tais fatores nos parâmetros principais do ES-MDA:
o tamanho do conjunto, o número de assimilações e o vetor de atualização
dos parâmetros. Com a conclusão desta análise, nós propomos uma nova técnica
para gerar os fatores de inflação para o ES-MDA baseada em um método
de regularização para algorítmos do tipo Levenberg-Marquardt. Investigando
os resultados de um problema de inundação de um reservatório 2D, o novo
método obtém melhor estimativa tanto para os parâmetros do modelo tanto
quanto para os dados observados. / [en] The ensemble smoother with multiple data assimilation (ES-MDA) gained
much attention as a powerful parameter estimation method. The main idea
of the ES-MDA is to assimilate the same data multiple times with an inflated
data error covariance matrix. In the original ES-MDA implementation, these
inflation factors, such as the number of assimilations, are selected a priori.
The only requirement is that the sum of the inflation factors inverses must be
equal to one. Therefore, selecting them equal to the number of assimilations
is a straightforward choice. Nevertheless, recent studies have shown a relationship
between the ES-MDA update equation and the solution to a regularized
inverse problem. Hence, the inflation factors play the role of the regularization
parameter at each ES-MDA assimilation step. As a result, they have also suggested
new procedures to generate these elements based on the discrepancy
principle. Although several studies proposed efficient techniques to generate
the ES-MDA inflation factors, an optimal procedure to generate them remains
an open problem. Moreover, the studies diverge on which regularization scheme
is sufficient to provide the best ES-MDA outcomes. Therefore, in this work,
we address the problem of generating the ES-MDA inflation factors and their
influence on the method s performance. We present a numerical analysis of
the influence of such factors on the main parameters of the ES-MDA, such
as the ensemble size, the number of assimilations, and the ES-MDA vector of
model parameters update. With the conclusions presented in the aforementioned
analysis, we propose a new procedure to generate ES-MDA inflation
factors based on a regularizing scheme for Levenberg-Marquardt algorithms.
It is shown through a synthetic two-dimensional waterflooding problem that
the new method achieves better model parameters and data match compared
to the other ES-MDA implementations available in the literature.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:54602
Date09 September 2021
CreatorsTHIAGO DE MENEZES DUARTE E SILVA
ContributorsSINESIO PESCO
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0024 seconds