• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] DETERMINISTIC ACOUSTIC SEISMIC INVERSION USING ARTIFICIAL NEURAL NETWORKS / [pt] INVERSÃO SÍSMICA ACÚSTICA DETERMINÍSTICA UTILIZANDO REDES NEURAIS ARTIFICIAIS

MARCELO GOMES DE SOUZA 02 August 2018 (has links)
[pt] A inversão sísmica é o processo de transformar dados de Sísmica de Reflexão em valores quantitativos de propriedades petroelásticas das rochas. Esses valores, por sua vez, podem ser correlacionados com outras propriedades ajudando os geocientistas a fazer uma melhor interpretação que resulta numa boa caracterização de um reservatório de petróleo. Existem vários algoritmos tradicionais para Inversão Sísmica. Neste trabalho revisitamos a Inversão Colorida (Impedância Relativa), a Inversão Recursiva, a Inversão Limitada em Banda e a Inversão Baseada em Modelos. Todos esses quatro algoritmos são baseados em processamento digital de sinais e otimização. O presente trabalho busca reproduzir os resultados desses algoritmos através de uma metodologia simples e eficiente baseada em Redes Neurais e na pseudo-impedância. Este trabalho apresenta uma implementação dos algoritmos propostos na metodologia e testa sua validade num dado sísmico público que tem uma inversão feita pelos métodos tradicionais. / [en] Seismic inversion is the process of transforming Reflection Seismic data into quantitative values of petroleum rock properties. These values, in turn, can be correlated with other properties helping geoscientists to make a better interpretation that results in a good characterization of an oil reservoir.There are several traditional algorithms for Seismic Inversion. In this work we revise Color Inversion (Relative Impedance), Recursive Inversion, Bandwidth Inversion and Model-Based Inversion. All four of these algorithms are based on digital signal processing and optimization. The present work seeks to reproduce the results of these algorithms through a simple and efficient methodology based on Neural Networks and pseudo-impedance. This work presents an implementation of the algorithms proposed in the methodology and tests its validity in a public seismic data that has an inversion made by the traditional methods.
2

[pt] ESTUDO SOBRE CARACTERIZAÇÃO DE RESERVATÓRIOS POR PROGRAMAÇÃO GENÉTICA / [en] STUDIES ON RESERVOIR CHARACTERIZATION VIA GENETIC PROGRAMMING

JEFF MAYNARD GUILLEN 15 February 2016 (has links)
[pt] Na área de exploração e produção de petróleo são alocados grandes investimentos para conseguir diminuir os riscos associados à baixos níveis de produção, que podem ser minimizados mediante a acertada caracterização do reservatório de petróleo. Uma valiosa fonte de informação pode ser extraída de dados sísmicos 3D, obtidos do campo em estudo. O custo econômico de aquisição de esta base de dados para o reservatório completo é relativamente baixo, se comparado com uma amostragem direta por meio de perfurações de poços. Embora, a relação entre os dados sísmicos e as propriedades de reservatório seja considerada ambígua, esta deve ser integrada com informação confiável, como aquela obtida mediante perfilagem de poços. Fazendo uso dos abundantes dados sísmicos e das escassas, mas, precisas medições em perfurações existentes, foi desenvolvido neste trabalho um sistema baseado no algoritmo de Programação Genética (PG) para caracterizar geologicamente um reservatório de petróleo. PG é uma técnica de computação evolucionária capaz de estimar relações não lineares entre um conjunto de entrada e de saída, mediante uma expressão simbólica explícita. Para extrair informação adicional nos registros sísmicos são calculados atributos sísmicos, que facilitam a identificação de características estratigráficas ou estruturais do subsolo representadas indiretamente pela sísmica. Adicionalmente, é utilizado o método de inversão sísmica para o cálculo da impedância acústica, que é uma variável auxiliar derivada de sísmica calibrada com perfis de poço. Os atributos sísmicos junto com a impedância acústica servirão para a estimação de propriedades geológicas. Esta metodologia de trabalho foi testada em um reservatório real de grande complexidade geológica. Por meio de PG, foi representada satisfatoriamente a relação entre dados derivados da sísmica e a porosidade do campo, demostrando assim que PG é uma alternativa viável para a caracterização geológica de reservatórios. Posteriormente, foi realizada uma clusterização do campo baseada em características geofísicas que permitiram a construção de estimadores por PG especializados para cada zona. / [en] In the field of oil exploration and production a great deal of investment is allocated in reducing the risks associated to low production levels that can be minimized through an accurate oil reservoir characterization. A valuable source of information can be extracted from 3D seismic data, obtained from the studied reservoir. The economic cost of the acquisition of this data base for the whole reservoir is relatively low, if compared to the direct sampling method of well drilling. Being that the relationship between seismic data and reservoir properties is considered ambiguous, it must be integrated with reliable information, such as that obtained by well logging. Making use of abundant seismic data and scarce, yet accurate, measurements from the existing drillings, it was developed in this study a system based in the algorithm of Genetic Programming (GP), to geologically characterize an oil reservoir. GP is an evolutionary computational technique capable of estimating the non-linear relationships between input and output parameter, through an explicit symbolic expression. In order to extract additional information from seismic records, seismic attributes are calculated, which facilitate tasks of identifying stratigraphic and structural characteristics of the subsurface, represented indirectly by seismic data. Moreover, a seismic inversion method is used to estimate the acoustic impedance, an auxiliary variable derived from seismic data calibrated by well logs. The seismic attributes along with the acoustic impedance will be used to estimate geological properties. This workflow was tested on a real reservoir, thus presenting geological complexity. Through GP, the relationship between seismic derived data and the field porosity was represented satisfactorily, demonstrating that GP is a viable alternative for geologic reservoir characterization. Afterwards, the reservoir was divided in clusters according to geophysical properties, this allowed the construction of GP based estimators for each zone.
3

[pt] AVALIANDO O USO DO ALGORITMO RANDOM FOREST PARA SIMULAÇÃO EM RESERVATÓRIOS MULTI-REGIÕES / [en] EVALUATING THE USE OF RANDOM FOREST REGRESSOR TO RESERVOIR SIMULATION IN MULTI-REGION RESERVOIRS

IGOR CAETANO DINIZ 22 June 2023 (has links)
[pt] Simulação de reservatórios de óleo e gás é uma demanda comum em engenharia de petróleo e pesquisas relacionadas, que pode requerer um elevado custo computacional de tempo e processamento ao resolver um problema matemático. Além disso, alguns métodos de caracterização de reservatórios necessitam múltiplas iterações, resultando em muitas simulações para obter um resultado. Também podemos citar os métodos baseados em conjunto, tais como o ensemble Kalman filter, o EnKF, e o Ensemble Smoother With Multiple Data Assimilation,o ES-MDA, que requerem muitas simulações. Em contrapartida, o uso de aprendizado de máquina cresceu bastante na indústria de energia. Isto pode melhorar a acurácia de predição, otimizar estratégias e outros. Visando reduzir as complexidades de simulação de reservatórios, este trabalho investiga o uso de aprendizado de máquina como uma alternativa a simuladores convencionais. O modelo Random Forest Regressor é testado para reproduzir respostas de pressão em um reservatório multi-região radial composto. Uma solução analítica é utilizada para gerar o conjunto de treino e teste para o modelo. A partir de experimentação e análise, este trabalho tem o objetivo de suplementar a utilização de aprendizado de máquina na indústria de energia. / [en] Oil and gas reservoir simulation is a common demand in petroleum engineering, and research, which may have a high computational cost, solving a mathematical numeric problem, or high computational time. Moreover, several reservoir characterization methods require multiple iterations, resulting in many simulations to obtain a reasonable characterization. It is also possible to mention ensemble-based methods, such as the ensemble Kalman filter, EnKF, and the Ensemble Smoother With Multiple Data Assimilation, ES-MDA, which demand lots of simulation runs to provide the output result. As a result, reservoir simulation might be a complex subject to deal with when working with reservoir characterization. The use of machine learning has been increasing in the energy industry. It can improve the accuracy of reservoir predictions, optimize production strategies, and many other applications. The complexity and uncertainty of reservoir models pose significant challenges to traditional modeling approaches, making machine learning an attractive solution. Aiming to reduce reservoir simulation’s complexities, this work investigates using a machine-learning model as an alternative to conventional simulators. The Random Forest regressor model is experimented with to reproduce pressure response solutions for multi-region radial composite reservoirs. An analytical approach is employed to create the training dataset in the following procedure: the permeability is sorted using a specific distribution, and the output is generated using the analytical solution. Through experimentation and analysis, this work aims to advance our understanding of using machine learning in reservoir simulation for the energy industry.
4

[en] EVALUATING THE IMPACT OF THE INFLATION FACTORS GENERATION FOR THE ENSEMBLE SMOOTHER WITH MULTIPLE DATA ASSIMILATION / [pt] INVESTIGANDO O IMPACTO DA GERAÇÃO DOS FATORES DE INFLAÇÃO PARA O ENSEMBLE SMOOTHER COM MÚLTIPLA ASSIMILAÇÃO DE DADOS

THIAGO DE MENEZES DUARTE E SILVA 09 September 2021 (has links)
[pt] O ensemble smoother with multiple data assimilation (ES-MDA) se tornou um poderoso estimador de parâmetros. A principal ideia do ES-MDA é assimilar os mesmos dados com a matriz de covariância dos erros dos dados inflada. Na implementação original do ES-MDA, os fatores de inflação e o número de assimilações são escolhidos a priori. O único requisito é que a soma dos inversos de tais fatores seja igual a um. Naturalmente, escolhendo-os iguais ao número de assimilações cumpre este requerimento. Contudo, estudos recentes mostraram uma relação entre a equação de atualização do ES-MDA com a solução para o problema inverso regularizado. Consequentemente, tais elementos agem como os parâmetros de regularização em cada assimilação. Assim, estudos propuseram técnicas para gerar tais fatores baseadas no princípio da discrepância. Embora estes estudos tenham propostos técnicas, um procedimento ótimo para gerar os fatores de inflação continua um problema em aberto. Mais ainda, tais estudos divergem em qual método de regularização é sufiente para produzir os melhores resultados para o ES-MDA. Portanto, nesta tese é abordado o problema de gerar os fatores de inflação para o ESMDA e suas influências na performance do método. Apresentamos uma análise numérica do impacto de tais fatores nos parâmetros principais do ES-MDA: o tamanho do conjunto, o número de assimilações e o vetor de atualização dos parâmetros. Com a conclusão desta análise, nós propomos uma nova técnica para gerar os fatores de inflação para o ES-MDA baseada em um método de regularização para algorítmos do tipo Levenberg-Marquardt. Investigando os resultados de um problema de inundação de um reservatório 2D, o novo método obtém melhor estimativa tanto para os parâmetros do modelo tanto quanto para os dados observados. / [en] The ensemble smoother with multiple data assimilation (ES-MDA) gained much attention as a powerful parameter estimation method. The main idea of the ES-MDA is to assimilate the same data multiple times with an inflated data error covariance matrix. In the original ES-MDA implementation, these inflation factors, such as the number of assimilations, are selected a priori. The only requirement is that the sum of the inflation factors inverses must be equal to one. Therefore, selecting them equal to the number of assimilations is a straightforward choice. Nevertheless, recent studies have shown a relationship between the ES-MDA update equation and the solution to a regularized inverse problem. Hence, the inflation factors play the role of the regularization parameter at each ES-MDA assimilation step. As a result, they have also suggested new procedures to generate these elements based on the discrepancy principle. Although several studies proposed efficient techniques to generate the ES-MDA inflation factors, an optimal procedure to generate them remains an open problem. Moreover, the studies diverge on which regularization scheme is sufficient to provide the best ES-MDA outcomes. Therefore, in this work, we address the problem of generating the ES-MDA inflation factors and their influence on the method s performance. We present a numerical analysis of the influence of such factors on the main parameters of the ES-MDA, such as the ensemble size, the number of assimilations, and the ES-MDA vector of model parameters update. With the conclusions presented in the aforementioned analysis, we propose a new procedure to generate ES-MDA inflation factors based on a regularizing scheme for Levenberg-Marquardt algorithms. It is shown through a synthetic two-dimensional waterflooding problem that the new method achieves better model parameters and data match compared to the other ES-MDA implementations available in the literature.

Page generated in 0.0458 seconds