Return to search

[en] ESTIMATION OF THE SHORTAGE EFFECTS IN LOAD FORECASTING / [pt] ESTIMATIVA DOS EFEITOS DO RACIONAMENTO NAS PREVISÕES DE CARGA ELÉTRICA

[pt] Esta dissertação investiga os efeitos do racionamento de
energia elétrica ocorrido no período entre junho de 2001 a
fevereiro de 2002, nas previsões de energia das principais
concessionárias brasileiras. Para tal, estudamos o
desempenho de modelos lineares e não-lineares. Dentre os
modelos lineares, analisamos os modelos ARIMA (p,d,q) de
Box & Jenkins e os modelos de amortecimento exponencial de
Holt & Winters. Dentre os modelos não-lineares, são
abordadas técnicas de inteligência artificial tais como
Redes Neurais e Lógica Fuzzy. Visto que o racionamento
levou a previsões ineficientes, propomos alternativas para
reduzir seu impacto. Por último, investigamos os impactos
causados pela crise energética nas previsões doze passos à
frente de carga elétrica provenientes de vinte e oito
concessionárias. A base de dados é composta pelos valores
observados e as previsões fornecidas pelo PREVCAR, um dos
sistemas de previsão da cadeia oficial de programas do
setor elétrico brasileiro. Por meio de um procedimento de
Análise de Agrupamento utilizando Redes Neurais Artificiais
do tipo SOM (Self Organizing Map) de Kohonen são
estabelecidos os grupos de concessionárias que possuem os
mesmos comportamentos diante do racionamento. Como
resultado final, foram estimados fatores de redução das
previsões causados pelo racionamento, que servem como base
de cálculo para reduções nas previsões futuras em períodos
de crise de abastecimento. / [en] This dissertation aims at an exploratory study of impacts
caused by the 2001 energy crisis on the current forecasts
produced on a monthly basis for main distributing
utilities. For that we show an accuracy study of the
performance of the linear and non-linear models. It has
been used, within the linear models class, the modeling
approach of Box-Jenkins and exponential smoothing of Holt-
Winters. Within the non-linear ones, it was chosen those
based on artificial intelligence techniques, such as Fuzzy
Logic and Artificial Neural Network. Due to the lack of
accuracy of the models to cope with the discontinuities
provoked by the crisis on the forecasts, some alternative
tools to reduce the impact on the forecast errors are
proposed. Finally, the impacts caused by the crisis on
multiple steps ahead forecasts have also been
investigated. It was taken the monthly forecasts produced
by PREVCAR (one of official Brazilian load forecasting
system), as well as the observed values covering the same
period, to create the crisis response indices series for
each one of the twenty and eight utilities included in the
analysis. It was also used the well-known neural network
based algorithm SOM (Self Organizing Maps) to classify the
utilities into homogeneous groups, according to their
response to the energy crisis. As a final result, for each
group, it was estimated the reduction factors that can be
used as a prior information in future energy supply
crisis.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:4545
Date01 March 2004
CreatorsMARCELO PIERI FERREIRA
ContributorsREINALDO CASTRO SOUZA
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0025 seconds