Heart valve interstitial cells (VICs) undergo activation and proliferation in repair and disease, but the mechanisms are not fully understood. We hypothesize that the establishment of N-cadherin/β-catenin cell-cell contacts may decrease VIC activation, and that Wnt3a/β-catenin signaling may increase VIC proliferation. VIC cultures of different densities are stained for α-SMA, cofilin, TGF-β, pSmad2/3, N-cadherin and β-catenin, and probed for phospho-β-catenin by Western blot. Low density VIC cultures are treated with exogenous Wnt3a and measured for cell number, proliferation, apoptosis, α-SMA, β-catenin, and β-catenin-mediated transcription. β-Catenin siRNA knockdown is used to assess β-catenin specificity. Increased staining of α-SMA, cofilin, TGF-β, pSmad2/3, nuclear β-catenin, and increased phospho-β-catenin are associated with few cell-cell contacts. Wnt3a increased VIC cell number, proliferation, nuclear β-catenin and β-catenin-mediated transcription without affecting activation and apoptosis, and proliferation is abolished by β-catenin siRNA. Thus, N-cadherin/β-catenin cell-cell contacts may inhibit VIC activation and Wnt3a/β-catenin signaling may increase VIC proliferation.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/32290 |
Date | 26 March 2012 |
Creators | Xu, Songyi |
Contributors | Gotlieb, Avrum I. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0028 seconds