Return to search

Etude de l’activité in vitro des β-lactamines sur Mycobacterium abscessus et recherche de leurs cibles / In vitro activities of β-lactams against Mycobacterium abscessus and search of the β-lactams targets

Mycobacterium abscessus est une mycobactérie responsable principalement d’infections pulmonaires, en particulier chez les patients atteints de mucoviscidose ou de dilatation des bronches. M. abscessus est naturellement résistante aux antituberculeux, laissant peu d’options thérapeutiques. Le traitement de référence associait classiquement un aminoside, un macrolide (clarithromycine) et une β-lactamine (céfoxitine ou imipénème), avec un taux de succès d’environ 50 %. Cependant, des souches résistantes à la clarithromycine sont fréquemment isolées, remettant en cause l’utilisation de cet antibiotique. M. abscessus produit naturellement une β-lactamase à large spectre (BlaMab) mais les mécanismes d’action des β-lactamines n’ont pas été étudiés chez cette espèce, ce qui constitue une entrave à l’optimisation des traitements par cette classe d’antibiotiques. Le premier objectif était d’identifier et de caractériser les cibles des β-lactamines chez cette espèce. Inhibant la dernière étape de polymérisation du peptidoglycane, les cibles potentielles des β-lactamines sont trois familles d’enzymes : les D,D-transpeptidases et les D,D­carboxypeptidases appartenant à la famille des protéines de liaison à la pénicilline (PLP), ainsi que les L,D-transpeptidases qui sont majoritairement responsables de cette dernière étape chez cette espèce. Pour identifier les cibles, des mutants résistants aux β-lactamines ont été sélectionnés à partir de la souche de référence M. abscessus CIP104536 et d’un dérivé portant une délétion du gène blaMab (∆blaMab). Pour les deux souches, l’émergence de la résistance aux β-lactamines a requis de multiples étapes, ce qui constitue un atout pour leur utilisation thérapeutique. Pour les mutants obtenus à partir de la souche CIP104536, les analyses phénotypiques ont montré que la résistance aux β-lactamines n'est pas due à une augmentation de l’efficacité catalytique de BlaMab, à une surproduction de cette enzyme, ou à une diminution de la perméabilité. Le séquençage des génomes de mutants résistants n’a pas révélé de mutations dans les gènes codant pour les L,D-transpeptidases, mais des mutations ont été trouvées dans des gènes codant pour deux PLP. D’autres mutations se situent dans des gènes codant en particulier pour des protéines non caractérisées. L’acquisition de la résistance pourrait donc dépendre de mutations affectant des facteurs essentiels à l’activité des cibles des β­lactamines. Le deuxième objectif était d’étudier et de comparer l’activité in vitro des β-lactamines sur M. abscessus. Des expériences de bactéricidie et d’activité intracellulaire chez le macrophage infecté ont été effectuées pour les souches CIP104536 et ∆blaMab. Parmi les antibiotiques étudiés (amikacine, céfoxitine, imipénème, ceftaroline, et amoxicilline), l’imipénème est le plus efficace sur les deux souches. Sur la souche ∆blaMab, l’association d’imipénème et d’amikacine est bactéricide. En l’absence de BlaMab, l’amoxicilline est aussi efficace que l’imipénème. L’avibactam augmente l’activité de la ceftaroline mais l’inhibition de BlaMab est seulement partielle en intracellulaire. Les résultats obtenus in vitro montrent que l’imipénème est supérieur à la céfoxitine pour des concentrations atteignables dans le sérum. L’inhibition de BlaMab pourrait augmenter l’efficacité de l’imipénème et d’autres composés utilisés pour traiter les infections pulmonaires à M. abscessus. / Mycobacterium abscessus is an important pathogen responsible for pulmonary infections in cystic fibrosis patients or in patients suffering from bronchiectasis. The treatment of infections due to M. abscessus is complicated since this bacterium is naturally resistant to the anti­tuberculous agents. The recommended treatment includes an aminoglycoside, a macrolide (clarithromycin) and a β-lactam (cefoxitin or imipenem), with a success rate of about 50 %. However, strains resistant to clarithromycin are frequently isolated, questioning the use of this antibiotic. M. abscessus naturally produces a broad spectrum β-lactamase (BlaMab) but the mechanisms of action of the β-lactams have not been studied in this species, impairing the optimization of the treatment by these antibiotics. The first objective was to identify and characterize the targets of β-lactams antibiotics in this species. Inhibiting the final stage of the peptidoglycan polymerization, the potential targets of β-lactams are three families of enzymes: the D,D-transpeptidases and D,D­carboxypeptidases belonging to the family of penicillin-binding proteins (PBP), and the L,D-transpeptidases which are mainly responsible for this final stage in this species. To identify the targets, mutants resistant to β-lactams have been selected from the reference strain M. abscessus CIP104536 and from its β-lactamase-deficient derivative ΔblaMab. For both strains, the emergence of resistance to β­lactams has required multiple steps, which is an advantage for the therapeutic use of these antibiotics. For the mutants derived from the strain CIP104536, phenotypic analyzes showed that the resistance to β-lactams is not due to an increase in the catalytic efficiency of BlaMab, to an overproduction of this enzyme, or to a decrease in permeability. Genomes sequencing of the resistant mutants did not reveal mutations in the genes encoding the L,D-transpeptidases, but mutations have been found in genes encoding two PBPs. Other mutations have been detected in genes encoding uncharacterized proteins. Acquisition of resistance could therefore depend on mutations affecting key factors essential for the activity of β-lactams targets. The second objective was to study and compare the in vitro activities of β-lactams against M. abscessus. Bactericidal experiments and intracellular activity in the infected macrophage were performed for the strains CIP104536 and ΔblaMab. Among the antibiotics tested (amikacin, cefoxitin, imipenem, ceftaroline, and amoxicillin), imipenem is the most effective agent against the two strains. Combination of imipenem and amikacin was bactericidal against the ΔblaMab mutant. In the absence of BlaMab, amoxicillin was as active as imipenem. Avibactam increased the intracellular activity of ceftaroline but inhibition of BlaMab was only partial intracellularly. Evaluation of the killing and intracellular activities of β-lactams indicates that imipenem is superior to cefoxitin at clinically achievable drug concentrations. Inhibition of BlaMab could improve the efficacy of imipenem and extend the spectrum of drug potentially useful to treat pulmonary infections.

Identiferoai:union.ndltd.org:theses.fr/2015USPCB107
Date27 November 2015
CreatorsLefebvre, Anne-Laure
ContributorsSorbonne Paris Cité, Mainardi, Jean-Luc
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds