In this thesis the electronic and magnetic structure of the transition metal oxyhalides TiOCl, TiOBr and VOCl is investigated. The main experimental methods are photoemission (PES) and x-ray absorption (XAS) spectroscopy as well as resonant inelastic x-ray scattering (RIXS). The results are compared to density-functional theory, and spectral functions from dynamical mean-field theory and different kinds of model calculations. Questions addressed here are those of the dimensionality of the magnetic and electronic interactions, the suitability of the oxyhalides as prototypical strongly correlated model systems, and the possibility to induce a filling-controlled insulator-metal transition. It turns out that TiOCl is a quasi-one-dimensional system with non-negligible two-dimensional coupling, while the one-dimensional character is already quite suppressed in TiOBr. In VOCl no signatures of such one-dimensional behavior remain, and it is two-dimensional. In all cases, frustrations induced by the crystal lattice govern the magnetic and electronic properties. As it turns out, although the applied theoretical approaches display improvements compared to previous studies, the differences to the experimental data still are at least partially of qualitative instead of quantitative nature. Notably, using RIXS, it is possible for the first time in TiOCl to unambiguously identify a two-spinon excitation, and the previously assumed energy scale of magnetic excitations can be confirmed. By intercalation of alkali metal atoms (Na, K) the oxyhalides can be doped with electrons, which can be evidenced and even quantified using x-ray PES. In these experiments, also a particular vertical arrangement of dopants is observed, which can be explained, at least within experimental accuracy, using the model of a so-called "polar catastrophe". However, no transition into a metallic phase can be observed upon doping, but this can be understood qualitatively and quantitatively within an alloy Hubbard model due to the impurity potential of the dopants. Furthermore, in a canonical way a transfer of spectral weight can be observed, which is a characteristic feature of strongly correlated electron systems. Overall, it can be stated that the transition metal oxyhalides actually can be regarded as prototypical Mott insulators, yet with a rich phase diagram which is far from being fully understood. / In dieser Doktorarbeit wird die elektronische und magnetische Struktur der Übergangsmetall-Oxyhalogenide TiOCl, TiOBr und VOCl untersucht. Ein Hauptaugenmerk liegt dabei auf spektroskopischen Methoden wie der Photoemissions- (PES) und Röntgenabsorptions- (XAS) Spektroskopie, sowie auf resonanter inelastischer Röntgenstreuung (RIXS). Die Resultate werden mit Dichtefunktionaltheorie, sowie Spektralfunktionen aus dynamischer Molekularfeldtheorie und verschiedenen Modellrechnungen verglichen. Die hauptsächlich zu klärenden Fragestellungen waren die der Dimensionalität magnetischer und elektronischer Wechselwirkungen, die Eignung der Oxyhalogenide als prototypische, stark korrelierte Modellsysteme, sowie die MÄoglichkeit, einen bandfüllungsinduzierten Isolator-Metall-Übergang zu erreichen. Es zeigt sich, dass TiOCl ein quasi-eindimensionales System mit nicht zu vernachlässigender zweidimensionaler Kopplung darstellt, während der eindimensionale Charakter bei TiOBr bereits stärker unterdrückt ist. In VOCl sind schließlich keine Anzeichen eindimensionalen Verhaltens mehr erkennbar, es handelt sich also um ein zweidimensionales System. In allen Fällen spielen die durch das Gitter verursachten Frustrationen eine Rolle bei der Beschreibung der elektronischen und magnetischen Eigenschaften, und es stellt sich heraus, dass die verwendeten theoretischen Ansätze zwar eine Verbesserung im Vergleich zu früheren Studien bringen, die Unterschiede zu den experimentellen Daten aber weiterhin zumindest teilweise qualitativ und nicht nur quantitativ sind. Bemerkenswert ist, dass mithilfe von RIXS erstmals in TiOCl eine Zwei-Spinon-Anregung identifiziert, und dadurch die bisher angenommene Energieskala magnetischer Anregungen in TiOCl bestätigt werden kann. Durch Interkalation von Alkaliatomen (Na, K) können die Oxyhalogenide mit Elektronen dotiert werden, was sich anhand von Röntgen-PES zeigen und sogar quantitativ auswerten lässt. Dabei zeigt sich eine bestimmte vertikale Verteilung der Dotieratome, welche im Rahmen der experimentellen Genauigkeit durch das Modell einer sog. "Polaren Katastrophe" erklärt werden kann. Allerdings kann kein Übergang in eine metallische Phase beobachtet werden, doch dies lässt sich im Rahmen eines Legierungs-Hubbard-Modells, induziert durch das Störpotential der Dotieratome, qualitativ und quantitativ verstehen. Weiterhin zeigt sich in modellhafter Art und Weise ein Transfer von spektralem Gewicht, ein charakteristisches Merkmal stark korrelierter Elektronensysteme. Letztlich kann man den Schluss ziehen, dass die Übergangsmetall-Oxyhalogenide tatsächlich als prototypische Mott-Isolatoren aufgefasst werden können, die jedoch gleichzeitig ein reiches und bei weitem nicht vollständig verstandenes Phasendiagramm aufweisen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:4473 |
Date | January 2010 |
Creators | Glawion, Sebastian |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds