Return to search

Busemann G-Spaces, CAT(<em>k</em>) Curvature, and the Disjoint (0, <em>n</em>)-Cells Property

A review of geodesics and Busemann G-spaces is given. Aleksandrov curvature and the disjoint (0, n)-cells property are defined. We show how these properties are applied to and strengthened in Busemann G-spaces. We examine the relationship between manifolds and Busemann G-spaces and prove that all Riemannian manifolds are Busemann G-spaces, though not all metric manifolds are Busemann G-spaces. We show how Busemann G-spaces that also have bounded Aleksandrov curvature admit local closest-point projections to geodesic segments. Finally, we expound local properties of Busemann G-spaces and define a new property which we call the symmetric property. We show that Busemann G-spaces which have the disjoint (0,n)-cells property for every value of n cannot have the symmetric property.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7486
Date01 July 2017
CreatorsSafsten, Clarke Alexander
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Theses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0018 seconds