Return to search

The effect of quantum fields on black-hole interiors

Charged or rotating black holes possess an inner horizon beyond which determinism is
lost. However, the strong cosmic censorship conjecture claims that even small perturbations
will turn the horizon into a singularity beyond which the spacetime is inextendible,
preventing the loss of determinism. Motivated by this conjecture, this dissertation studies
free scalar quantum fields on various black-hole spacetimes to test whether quantum
effects can lead to the formation of a singularity at the inner horizon in cases where
classical perturbations cannot. The starting point is the investigation of the behaviour
of real-scalar-field observables near the inner horizon of Reissner-Nordström-de Sitter
spacetimes. Using semi-analytical methods, we find that quantum effects can indeed uphold
the censorship conjecture. Subsequently, we consider charged scalar fields on the
same spacetime and observe that a first-principle calculation is essential to accurately describe
the quantum effects at the inner horizon. As a first step towards an extension of
these results to rotating black holes, we rigorously construct the Unruh state for the real
scalar field on slowly rotating Kerr-de Sitter spacetimes. We show that it is a well-defined
Hadamard state and can therefore be used to compute expectation values of the stressenergy
tensor and other non-linear observables.:1 Introduction 7
2 An introduction to quantum fields and black holes 13
2.1 Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 A brief introduction to AQFT . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 An introduction to microlocal analysis . . . . . . . . . . . . . . . . . . . 24
2.4 An introduction to black-hole spacetimes . . . . . . . . . . . . . . . . . 28
2.4.1 The Reissner-Nordström-de Sitter spacetime . . . . . . . . . . . 28
2.4.2 The Kerr-de Sitter spacetime . . . . . . . . . . . . . . . . . . . . 32
2.5 Free scalar fields in black-hole spacetimes . . . . . . . . . . . . . . . . . 37
3 Computing the energy flux of the real scalar field 43
3.1 Strong cosmic censorship on RNdS . . . . . . . . . . . . . . . . . . . . 43
3.2 The Klein-Gordon equation on RNdS . . . . . . . . . . . . . . . . . . . 45
3.3 Extension to the charged scalar field on RNdS . . . . . . . . . . . . . . . 52
3.4 The energy flux at the Cauchy horizon . . . . . . . . . . . . . . . . . . . 53
4 The charged scalar field in Reissner-Nordström-de Sitter 63
4.1 The Unruh state for the charged scalar field . . . . . . . . . . . . . . . . 65
4.2 The renormalized current . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 The current in the Unruh state - numerical results . . . . . . . . . . . . . 80
4.4 The charged scalar field at the inner horizon . . . . . . . . . . . . . . . . 86
5 The Unruh state on Kerr-de Sitter 97
5.1 Null geodesics in the Kerr-de Sitter spacetime . . . . . . . . . . . . . . . 98
5.2 The Unruh state on Kerr-de Sitter . . . . . . . . . . . . . . . . . . . . . . 107
5.3 The Hadamard property of the Unruh state . . . . . . . . . . . . . . . . . 120
5.3.1 The Hadamard condition in O . . . . . . . . . . . . . . . . . . . 123
5.3.2 The Hadamard condition on M\O . . . . . . . . . . . . . . . . . 128
6 Summary and discussion 139
A Bibliography 143

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:87395
Date12 October 2023
CreatorsKlein, Christiane Katharina Maria
ContributorsUniversität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds