Return to search

Etude de la fission nucléaire par spectrométrie des rayons gamma prompts / Study of nuclear fission by spectrometry of the prompt gamma rays

La volonté d'améliorer l'efficacité énergétique des réacteurs nucléaires a motivé de nouvelles solutions dans leur conception. L'une d'elles est l’utilisation d’un réflecteur lourd dans les réacteurs de génération III+ et les futurs réacteurs de génération IV. Lorsque la matière est traversée par des rayons γ, les excitations induites entraînent une élévation de sa température. Ce processus, appelé échauffement γ, est responsable de plus de 90% de la production de chaleur dans la région hors combustible d'un réacteur nucléaire. C’est également le cas dans le réflecteur. Pour simuler l'effet de l’échauffement γ en fonction de la composition du combustible, il faut disposer de données précises sur les γ prompts émis par les différents fragments produits dans le processus de fission. En 2012, une campagne d’expériences inédite, EXILL, a été menée au réacteur de recherche de l'ILL. Un grand nombre de détecteurs HPGe a été placé autour d’une cible fissile et a mesuré les rayons γ émis par la cible alors qu’elle était irradiée par un faisceau intense de neutrons froids. Dans ce travail, nous avons analysé les données obtenues avec des cibles ²³⁵U. Elles nous ont permis d’étudier la désexcitation de plusieurs fragments de fission et plus globalement le processus de fission induite par des neutrons. Dans un premier temps, nous avons utilisé la méthode standard d'analyse par coïncidence γ-γ-γ. Nous avons pu filtrer les données expérimentales, identifier les transitions γ dans des fragments bien produits et calculer leur intensité relative. Les problèmes que nous avons rencontrés concernent le bruit de fond. Les résultats obtenus dépendent de ce choix et présentent donc des problèmes de reproductibilité. Nous avons développé et testé une nouvelle méthodologie d'analyse. Son principe est un balayage des portes de coïncidence selon trois directions, ce qui permet de trouver le bruit de fond le mieux adapté. L'idée principale était finalement de passer d'une méthode "spectroscopique", dont le but est de trouver de nouvelles transitions et des états excités dans un noyau, à une méthode "spectrométrique", qui nous permet d'obtenir plus précisément l’intensité de transitions γ connues, avec une meilleure estimation de leur incertitude. Cela nous a amené à développer un logiciel d'analyse semi-automatique d'ajustement des pics. Divers schémas de calcul de l'intensité des transitions γ ont été également élaborés pour tenir compte des contaminations possibles, selon leur emplacement dans la matrice de coïncidence et leur intensité. La méthode standard et la nouvelle méthode d'analyse ont été comparées pour l'analyse du ¹⁴²Ba. Dans ce travail, nous avons également comparé nos résultats sur quelques noyaux, tel que le ¹⁰⁰Zr, avec des simulations réalisées avec le code FIFRELIN. Ce dernier est un code Monte-Carlo qui simule le processus de fission et la désexcitation des fragments de fission. FIFRELIN utilise plusieurs modèles différents pour décrire ces processus. Nous avons testé le comportement des différents modèles, trouvé les valeurs optimales des paramètres de simulation et testé comment ces configurations reproduisaient les résultats expérimentaux. FIFRELIN n'a pas été en mesure de reproduire simultanément les intensités des transitions γ émises par les fragments de ¹⁰⁰Zr et la multiplicité de neutrons prompts moyennée sur tous les fragments de fission. Cependant, avec des paramètres modifiés, FIFRELIN a fourni localement une multiplicité de neutrons prompts correcte pour les fragments de masse atomique A=100 et des intensités de transition γ bien reproduites pour le noyau de ¹⁰⁰Zr. Nous avons également comparé nos résultats expérimentaux sur les fragments de ¹⁰⁰Zr provenant du processus ²³⁵U(n,f) avec les autres données expérimentales disponibles provenant des expériences sur ²⁴⁸Cm(sf) et ²⁵²Cf(sf), et une autre expérience sur ²³⁵U(n,f). / The desire to improve the fuel efficiency of nuclear reactors has motivated new solutions in their design. One of them is the heavy reflector used in the generation III+ and in the future generation IV reactors. γ-rays passing through matter cause its excitation and temperature rise. It is a process called γ-heating, and it is responsible for more than 90% of the heat production in the non-fuel region of the nuclear reactor. This is also the case of the heavy reflector. To simulate the γ-heating effect in every state of the nuclear reactor it is necessary to have precise data on the prompt γ-rays emitted by different fission fragments produced in the course of the nuclear chain reaction. In 2012, at the research reactor of the ILL, an innovative experiment, called EXILL, was conducted. It produced a large amount of useful data on the de-excitation of the fission fragments. A large number of HPGe detectors were used to study the neutron induced fission process by measuring the emitted γ-rays. Fissile targets were irradiated by an intense cold neutron beam. In this work we analyzed the ²³⁵U targets. We studied several fission fragments and more generally the fission process by using high-resolution γ-ray spectroscopy. At the beginning, we used the standard γ-γ-γ coincidence analysis method. We were able to filter experimental data, identify the well produced γ-rays, and calculate their relative intensities. The problems we have encountered are related to the background. The results obtained with this method were background dependent and thus presented some problems with reproducibility. We therefore developed and tested a new analysis methodology. Its crucial feature is a coincidence gates scanning in three directions which helps to find the most suitable background. The idea was to move from a “spectroscopic” method, which main purpose is finding new transitions and excited states in a nucleus, to a “spectrometric” method, which allows us to obtain more precise γ-ray intensities. We developed a semi-automatic analysis software which facilitates fitting of the chosen γ-ray peak, the contamination and the background. Various γ-ray intensity calculation schemes were derived to take into account different contamination strengths and placements. The results of the analysis with the new technique are reproducible and more reliable. The standard and the new analysis method were compared in the ¹⁴²Ba analysis. In this work, we also compared our experimental results on some nuclei, such as ¹⁰⁰Zr, with the simulation results performed with the FIFRELIN code. It is a Monte-Carlo code which simulates the fission process and the de-excitation of the fission fragments. It uses various models to describe these processes. We were able to test the behavior of different models implemented in FIFRELIN to find the optimal simulation parameter values and to test how well these setups reproduce the experimental results. FIFRELIN was unable to simultaneously reproduce the γ-ray intensities of ¹⁰⁰Zr and the prompt-neutron multiplicity averaged over all fission fragments. However, with modified simulation parameters, FIFRELIN locally provided correct prompt-neutron multiplicity for the fission fragment with the atomic mass A=100 and well reproduced γ-ray intensities of ¹⁰⁰Zr. We also compared our experimental results on ¹⁰⁰Zr coming from the ²³⁵U(n,f) process with the other available experimental data coming from the experiments on ²⁴⁸Cm(sf) and ²⁵²Cf(sf), and another experiment on ²³⁵U(n,f).

Identiferoai:union.ndltd.org:theses.fr/2018SACLS390
Date15 October 2018
CreatorsRąpała, Michał
ContributorsUniversité Paris-Saclay (ComUE), Letourneau, Alain
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds