Return to search

Modélisations multi-matériaux multi-vitesses en dynamique rapide

De nombreuses simulations dans les domaines des impacts, des interactions fluide-structure ou des écoulements multiphasiques impliquent différentes structures indépendantes interagissant entre elles à travers des interfaces complexes. Pour ces problèmes, les stratégies classiques utilisent souvent une approche lagrangienne utilisant un maillage éléments finis par structure et des stratégies de couplage et de mise en contact adéquates. Ceci est très coûteux en terme de génération de maillages et difficile à mettre en place en présence de grandes déformations. Une alternative est d'utiliser une stratégie " eulérienne " décrivant les différentes structures sur une grille unique en utilisant une vitesse moyenne unique et en développant des lois d'état ad hoc pour gérer le caractère multiphasique des éléments traversés par l'interface. La physique de l'interface de ces modèles est en générale assez grossière. Dans ce contexte, il y a un regain d'intérêt pour les modèles utilisant un maillage global unique non conforme avec les structures et définissant des champs de vitesses éléments finis indépendants pour décrire le mouvement de chacune des structures. Cette stratégie est intéressante mais induit différents problèmes : suivi d'interface, développement d'une formulation ALE adaptée car les matériaux et le maillage ont des vitesses différentes, traitement correct de la contrainte cinématique à l'interface entre les structures. Une grande attention doit être portée à ce dernier point pour proposer une approche stable, sans verrouillage numérique et restant robuste en cas de grandes déformations. Dans cette thèse, nous proposons une stratégie originale basée sur une méthode d'éléments finis enrichis. Elle définit un champ de vitesse éléments finis par matériau sur un unique maillage. Les différents champs se recouvrent et forment un champ enrichi qui peut avoir une discontinuité à l'interface et permet de décrire le glissement entre les matériaux. La discontinuité est contrôlée par une contrainte de continuité des vitesses normales et par une inconnue supplémentaire, la pression d'interface qui est le multiplicateur de Lagrange associé à la contrainte cinématique. La formulation ALE utilisée est basée sur une décomposition du pas de temps entre phase lagrangienne et phase de projection. La phase lagrangienne est résolue par le schéma de Wilkins classique des codes hydrodynamiques alors que la projection est réalisée par calcul d'intersection entre les maillages lagrangiens déformés par la matière et un maillage commun plus régulier. L'interface est construite à partir de la fraction volumique de chaque matériau et sa reconstruction peut être discontinue entre les éléments. Deux variantes sont introduites, analysées et comparées. Elles diffèrent par la discrétisation du multiplicateur de Lagrange et donc, par celle de la contrainte de vitesse : -la continuité par nœud utilise un multiplicateur défini aux nœuds. Cette variante est simple et rapide mais ne prend pas correctement en compte les différences de compressibilité entre matériaux, -la continuité par maille utilise un multiplicateur constant par segment d'interface. Cette variante donne des résultats meilleurs que la première version. La méthode est stabilisée par l'ajout de nœuds internes dans les mailles mixtes dont les fonctions bulles associés sont linéaires par morceaux dans chaque élément ainsi que par une condensation de la masse adaptée pour assurer un équilibre stable de l'interface. L'équation de mouvement du nœud interne est discrétisée par un schéma implicite en temps. En conséquence, nous devons résoudre un système couplant tous les nœuds de l'interface pour calculer les vitesses autour de l'interface. Les deux variantes ont été implantées dans un code industriel. Elles sont validées et comparées dans plusieurs cas tests impliquant diverses situations comme des interactions fluide-structure ou du glissement entre solides.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00803315
Date01 February 2013
CreatorsFolzan, Gauthier
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds