Return to search

Sur quelques problèmes de géométrie différentielle liés à la théorie de l'élasticité

Cette thèse vise à approfondir les liens entre la géométrie différentielle et la théorie de l'élasticité, linéaire ou nonlinéaire. En s'appuyant sur cette analogie, on établit des résultats nouveaux tant en élasticité, qu'en géométrie différentielle.<br /> Dans les deux premiers chapitres, on montre que l'inégalité de Korn sur une surface est une conséquence de l'inégalité de Korn tridimensionnelle en coordonnées curvilignes et l'on établit une inégalité de type Korn sur une surface compacte sans bord. Dans le deux derniers chapitres, on établit certains résultats de géométrie différentielle concernant les espaces riemanniens et les surfaces sous des hypothèses affablies de régularité sur les données.<br />Dans l'appendice, on présente quelques résultats d'analyse utilisés dans la thèse.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00270549
Date15 December 2003
CreatorsMardare, Sorin
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds