Le joint à rainures hélicoïdales (JRH) est l'une des solutions techniques d'étanchéité sans contact utilisées dans les machines tournantes. Ce dispositif est conçu pour des applications bien particulières qui nécessitent une durée de vie et une non-tolérance aux fuites au-delà des limites que peuvent satisfaire les joints à contact. Le JRH est caractérisé par l'absence d'usure due au jeu radiale nettement supérieure aux amplitudes des aspérités et les défauts de fabrication. L'étanchéité est obtenue grâce aux rainures hélicoïdales présentes sur l'une des ses surfaces internes. Ces rainures sont à l'origine de phénomènes hydrodynamiques synthétisant un débit de pompage de même ordre que le débit de fuite.Dans ce travail, un modèle numérique pour le calcul d'étanchéité dans les JRH est proposé. Basé sur la théorie des films minces, le comportement de ce dernier est déterminé par le calcul du champ de pression et du remplissage qui satisfont l'Equation de Reynolds Modifiée (ERM). Cette dernière permet de bien gérer les frontières de rupture et de reformation du film. La résolution est faite par la méthode des éléments finis.La caractérisation du pouvoir d'étanchéité du JRH est faite par « la longueur utile » qui spécifie largeur, dans la direction axiale, de la zone occupée par le fluide lorsque l'étanchéité s'établisse. Cette étendue du domaine étant une inconnue du problème, on itère sur la longueur du joint jusqu'à l'obtention d'un débit axial nul sur le bord. Néanmoins, l'étanchéité dans le JRH dépend d'un certain nombre de paramètres géométriques et de fonctionnement. Il s'agit de la forme des rainures, leurs inclinaisons ainsi que la vitesse de rotation. Tout d'abord, une géométrie optimale de fonctionnement a été déterminée. Les aspects turbulents de l'écoulement et le comportement thermique, selon un bilan thermique global, sont également étudiés. Enfin, l'introduction des effets d'excentricité a permis de statuer sur les phénomènes dynamiques dans le JRH. / The viscoseal is one of the contacts less sealing technical solutions used in machinery. This device is designed for very specific applications requiring durability and non-tolerance leakage past the limits that can satisfy joints contact. The viscoseal is characterized by the friction absence due to radial clearance well above the asperities amplitudes and the manufacturing defects. The sealing is obtained by the helical grooves formed in one of its internal surfaces. These grooves induce a hydrodynamic phenomenon that synthesizes same pumping rate of the same order as the leakage rate.In this work, a numerical model is proposed to calculate the seal in the viscoseal. Based on the thin film theory, the behavior of the latter is determined by the calculation of the pressure field and the filling that satisfy the Modified Reynolds Equation (MRE). The latter allows managing the borders of the film breaking and reformation. Resolution is made by the finite element method.The sealing power characterization in the viscoseal is made by the "sealing length" that specifies width of the fluid full area, in the axial direction, when the sealing is established. This domain extension is unknown, it iterates over the length of the seal until a zero axial flow over the edge. However, in the sealing depends on several geometrical and operating parameters. It is about the shape of the grooves, their angle orientation of and the journal speed.First, an optimal operating geometry was determined. Turbulent aspects of flow and thermal behavior, according to a global heat balance, are also studied. Finally, the introduction of eccentricity effects allowed approving dynamic phenomena in the viscoseal.
Identifer | oai:union.ndltd.org:theses.fr/2015POIT2289 |
Date | 30 November 2015 |
Creators | Targaoui, Mourad |
Contributors | Poitiers, Université Cadi Ayyad (Marrakech, Maroc), Souchet, Dominique, Faitah, Khalid |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0025 seconds