La propagation d'une fissure chargée par un écoulement de fluide visqueux est un phénomène complexe où la compréhension des phénomènes mécaniques mis en jeu en pointe de fissures reste encore partielle. C'est le cas de la zone de décollement entre le solide et le fluide qui apparaît pour un certain choix de débit d'injection, de viscosité du fluide et de ténacité du matériau. Cette thèse propose une modélisation simplifiée de ce problème d'interaction fortement couplé. Dans un premier chapitre, on étudie un modèle simplifié unidimensionnel de film élastique collé sur un substrat rigide et on considère une injection de fluide visqueux entre le film et le substrat. On suppose que la propagation de la fissure est régie par la loi de Griffith. On néglige l'existence du retard possible entre le fluide et le solide et on choisit une loi de comportement non-linéaire pour le fluide visqueux. A partir d'une analyse asymptotique pour une faible viscosité, on établit une solution approchée du problème. On montre que le champ pression est singulier en pointe de fissure et on montre l'influence du débit d'injection sur la cinétique du trajet de fissuration. Dans le deuxième chapitre on propose de prendre en compte l'existence de la zone de décollement en modifiant la formulation du modèle et en le réécrivant sous la forme d'un problème d'optimisation en temps discret où les zones de décollement font partie des inconnues du problème. On valide la formulation proposée sur l'exemple analytique de l'écrasement d'une goutte par une barre rigide. On montre ensuite que cette formulation et l'algorithme lié à son implémentation sont capables de gérer l'évolution de l'écrasement de plusieurs gouttes de forme quelconque en capturant correctement les phase d'étalement des gouttes ainsi que de leur coalescence. On étend ensuite cette formulation au cas de l'écrasement d'une goutte par un film élastique. Dans le dernier chapitre, on examine la validité de l'hypothèse de lubrification utilisée en fracturation hydraulique. A l'aide de la méthode de développement asymptotique, on construit une équation de Reynolds régularisée avec des termes de gradient supérieur tenant compte de la variation spatiale de la hauteur des parois. On compare alors le comportement des champs de pression donnés par les équations de Reynolds classique et régularisée sur des exemples d'écoulement entre des conduits de formes multiples. / The crack evolution under a viscous fluid action is a complex phenomenon where the understanding of the mechanical phenomena near the crack tip is still largely limited. This is the case for the lag between the solid and the fluid front propagation which appears for some configurations of injection rate, fluid viscosity and material toughness. This thesis proposes a simplified model for this strongly coupled interaction problem.The first chapter studies a simplified one-dimensional model of a elastic film bonded to a rigid substrate. We consider a viscous fluid injection between the film and the substrate. The crack propagation is assumed to follow the Griffith's law. The existence of the lag is neglected and a non-linear behavior law is chosen for the viscous fluid. Using an asymptotic analysis, an approximate solution is established for the low viscosity case. It is shown that the pressure field diverges at the crack tip and that the kinetics of the crack is influenced by the injection rate. The second chapter proposes to take into account the existence of the lag by modifying the model formulation and rewriting it as a discrete time optimisation problem where the delamination zones are part of the unknowns of the problem. This formulation is validated for the analytical example of a drop crushed by a rigid bar. It is shown that this formulation and its implementation can manage the evolution of several drops of any shape and correctly captures the drops spreading and coalescence. This formulation is then extended to the case of a drop crushed by an elastic film. In the last chapter, the validity of the lubrication hypothesis is examinated. Using an asymptotic analysis, a regularized Reynolds equation is constructed with higher gradient terms taking into account the spatial variation of the walls height. A comparison between the pressure fields behaviour given by the classical and the regularized Reynolds equation is shown for different conducts.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLY016 |
Date | 12 November 2018 |
Creators | Cordova Hinojosa, Rogers Bill |
Contributors | Paris Saclay, Maitournam, Habibou |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds