Mes travaux de recherche portent sur l'analyse numérique des intégrateurs géométriques et multi-échelles pour les équations différentielles déterministes ou stochastiques. Les modèles d'équations différentielles issus de la physique ou la chimie possèdent souvent une structure géométrique ou multi-échelles particulière (par exemple, les structures hamiltoniennes, les intégrales premières, les structures multi-échelles en temps ou en espace, les systèmes hautement oscillatoires), mais leur complexité est souvent telle qu'une solution satisfaisante est hors de portée en utilisant seulement des méthodes numériques standards à usage général. L'objectif est donc d'identifier les propriétés géométriques ou multi-échelles pertinentes de ces problèmes, et d'en tirer avantage pour concevoir et analyser de nouveaux intégrateurs efficaces, fiables et précis, reproduisant fidèlement le comportement qualitatif de la solution exacte des modèles considérés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00840733 |
Date | 02 July 2013 |
Creators | Vilmart, Gilles |
Publisher | École normale supérieure de Cachan - ENS Cachan |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0019 seconds