Return to search

Elaboration d'un modèle d'écoulements turbulents en faible profondeur : application au ressaut hydraulique et aux trains de rouleaux / Elaboration of a model of turbulent shallow water flows : application to the hydraulic jump and roll waves.

On dérive un nouveau modèle d’écoulements cisaillés et turbulents d’eau peu profonde. Les écarts de la vitesse horizontale par rapport à sa valeur moyenne sont pris en compte par une nouvelle variable appelée enstrophie, liée à la vorticité et à l’énergie turbulente. Le modèle comporte trois équations qui sont les bilans de masse, de quantité de mouvement et d’énergie. Le modèle est hyperbolique et peut être écrit sous forme conservative. L’énergie turbulente, dont l’intensité peut être importante, est produite par les ondes de choc qui apparaissent naturellement dans le modèle. Les écoulements rapidement variés étudiés sont caractérisés par l’existence d’une structure turbulente appelée rouleau dans laquelle la dissipation d’énergie turbulente joue un rôle majeur. Cette dissipation, qui détermine notamment le profil de profondeur, est modélisée par l’introduction d’un terme nouveau dans le bilan d’énergie. Le modèle comporte deux paramètres. L’un gouverne la dissipation de l’énergie turbulente du rouleau. L’autre paramètre, l’enstrophie de paroi, liée au cisaillement sur le fond, peut être considéré comme constant dans la partie rapidement variée d’un écoulement, sur laquelle il exerce une influence assez faible. Ce modèle a été appliqué avec succès aux vagues des trains de rouleaux et au ressaut hydraulique classique. Le profil de la surface libre est en très bon accord avec les résultats expérimentaux. L’étude numérique en régime non stationnaire permet notamment de prédire le régime oscillatoire du ressaut hydraulique. La fréquence d’oscillations correspondante est en accord satisfaisant avec les mesures expérimentales de la littérature. / We derive a new model of turbulent shear shallow water flows. The deviation of the horizontal velocity from its average value is taken into account by a new variable called enstrophy, which is related to the vorticity and to the turbulent energy. The model consists of three equations which are the balances of mass, momentum and energy. The model is hyperbolic and can be written in conservative form. The turbulent energy, which can be of high intensity, is produced in shock waves which appear naturally in the model. The rapidly varied flows we studied are characterized by the presence of a turbulent structure called roller in which the turbulent energy dissipation plays a major part. This dissipation, which determines, in particular, the depth profile, is modelled by the introduction of a new term in the energy balance equation. The model contains two parameters. The first one governs the dissipation of the turbulent energy of the roller. The second one, the wall enstrophy, related to the shearing at the bottom, can be considered as constant in the rapidly varied part of the flow on which it does not exert an important influence. This model was successfully applied to roll waves and to the classical hydraulic jump. The free surface profile was found in very good agreement with the experimental results. The numerical study in the non-stationary case can notably predict the oscillations of the hydraulic jump. The corresponding oscillation frequency is in good agreement with the experimental measures found in the literature.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4764
Date25 November 2013
CreatorsRichard, Gael
ContributorsAix-Marseille, Gavrilyuk, Sergey
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds