L’automatisation de la prise de décision dans des applications qui affectent directement la qualité de vie des individus grâce aux algorithmes de réseaux de neurones est devenue monnaie courante. Ce mémoire porte sur les enjeux d’équité individuelle qui surviennent lors de la vérification, de l’entraînement et de la prédiction des réseaux de neurones. Une approche populaire pour garantir l’équité consiste à traduire une notion d’équité en contraintes sur les paramètres du modèle. Néanmoins, cette approche ne garantit pas toujours des prédictions équitables des modèles de réseaux de neurones entraînés. Pour relever ce défi, nous avons développé une technique de post-traitement guidée par les contre-exemples afin de faire respecter des contraintes d’équité lors de la prédiction. Contrairement aux travaux antérieurs qui ne garantissent l’équité qu’aux points entourant les données de test ou d’entraînement, nous sommes en mesure de garantir l’équité sur tous les points du domaine. En outre, nous proposons une technique de prétraitement qui repose sur l’utilisation de l’équité comme biais inductif. Cette technique consiste à incorporer itérativement des contre-exemples plus équitables dans le processus d’apprentissage à travers la fonction de perte. Les techniques que nous avons développé ont été implémentées dans un outil appelé FETA. Une évaluation empirique sur des données réelles indique que FETA est non seulement capable de garantir l’équité au moment de la prédiction, mais aussi d’entraîner des modèles précis plus équitables. / Algorithmic decision-making driven by neural networks has become very prominent in applications that directly affect people’s quality of life. This paper focuses on the problem of ensuring individual fairness in neural network models during verification, training, and prediction. A popular approach for enforcing fairness is to translate a fairness notion into constraints over the parameters of the model. However, such a translation does not always guarantee fair predictions of the trained neural network model. To address this challenge, we develop a counterexample-guided post-processing technique to provably enforce fairness constraints at prediction time. Contrary to prior work that enforces fairness only on points around test or train data, we are able to enforce and guarantee fairness on all points in the domain. Additionally, we propose a counterexample guided loss as an in-processing technique to use fairness as an inductive bias by iteratively incorporating fairness counterexamples in the learning process. We have implemented these techniques in a tool called FETA. Empirical evaluation on real-world datasets indicates that FETA is not only able to guarantee fairness on-the-fly at prediction time but also is able to train accurate models exhibiting a much higher degree of individual fairness.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32001 |
Date | 06 1900 |
Creators | Mohammadi, Kiarash |
Contributors | Farnadi, Golnoosh |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0023 seconds