Return to search

Evolutionary ecology of social bacterial populations under antibiotic and bacteriophage pressure / Ecologie évolutive des populations bactériennes sociales sous la pression de bactériophages et d’antibiotiques

Les bactéries constituent le socle de presque tous les écosystèmes et l’étude de leurs dynamiques face aux perturbations biotiques et abiotiques est essentielle à la compréhension de leur maintien, de leur évolution et de leur diversification. Cette thèse vise à une meilleure appréhension de l’impact des bactériophages et des antibiotiques sur l’écologie évolutive des populations bactériennes et, plus particulièrement, sur l’évolution de leurs comportements sociaux. Dans une première partie, nous avons étudié comment les antibiotiques (Chapitres 1 et 2) et les phages (Chapitre 3) affectent les interactions fondées sur la production de biens publics ainsi que l’évolution de la résistance dans les populations de Pseudomonas aeruginosa, en combinant modélisation mathématique et évolution expérimentale. Nous avons montré que les phages et les antibiotiques favorisent les tricheurs face aux coopérateurs dans les environnements homogènes. Alors que l’avantage des tricheurs permet la croissance de la population et augmente la fréquence de résistance à court terme (Chapitre 1), les populations dominées par les tricheurs finissent par décliner en présence de phages, vraisemblablement suite aux pressions combinées des phages et des tricheurs (Chapitre 3). Dans une seconde partie, nous avons exploré in vitro les interactions complexes entre les phages et les antibiotiques dans le contexte des thérapies combinées. Conformément à la prédiction de la théorie de l’évolution selon laquelle plusieurs moyens de contrôle combinés sont plus efficaces que chacun séparément, nous avons montré que l’usage simultané de phages et d’antibiotiques réduit davantage la survie et la résistance des populations. Si ce résultat principal peut être modulé par différents facteurs tels que la dose d’antibiotiques (Chapitres 4 et 5), le moment d’inoculation (Chapitre 4), et le mode d’action des antibiotiques (Chapitre 5), il persiste sur le long terme (Chapitre 5). Nos résultats soulignent la complexité des interactions entre les effets négatifs des phages et des antibiotiques et l’écologie évolutive des populations bactériennes et apportent de nouveaux éléments à la fois à la compréhension de l’évolution de la socialité et à l’usage thérapeutique potentiel des phages et des antibiotiques. / Bacteria are the basis of virtually all ecosystems and examining their dynamics in the face of biotic and abiotic perturbations is essential to understanding their persistence, evolution and diversification. This thesis is directed towards a better understanding of the impact of phage and antibiotic pressure on the evolutionary ecology of bacterial populations and, in particular, on the evolution of bacterial social behaviours. First, using a combination of mathematical modelling and experimental evolution, we studied how antagonisms in the form of antibiotics (Chapters 1 and 2) and phages (Chapter 3) affect the dynamics of public goods production and strategies, and the evolution of resistance in populations of the bacterium Pseudomonas aeruginosa. We found that both phages and antibiotics favour cheats over cooperators in well-mixed environments. While the advantage to cheats leads to population growth and even increased resistance frequency in the short-term (Chapter 1), the cheat-dominated populations eventually declined in the presence of phage predators, arguably due to the combination of antagonist pressure and cheating load (Chapter 3). Second, based on the evolutionary prediction that multiple control agents will be more efficient at controlling bacterial populations and reducing the evolution of resistance, we investigated in vitro the complex interactions between phages and antibiotics in the context of combined therapies. We showed that the combination of phages and antibiotics decreased population survival and resistance evolution significantly more than either alone. While this main result may be mitigated by several factors such as antibiotic dose (Chapters 4 and 5), the timing of inoculation (Chapter 4), and antibiotic mode of action (Chapter 5), it is also obtained in longer-term assays (Chapter 5). Our results highlight the complexity of the interplay between the negative effects exerted by antibiotics and phages and the evolutionary ecology of bacterial populations, and bring new insights both to the understanding of social evolution and for the potential therapeutic use of phages and antibiotics.

Identiferoai:union.ndltd.org:theses.fr/2015MONTS041
Date16 December 2015
CreatorsVasse, Marie
ContributorsMontpellier, Hochberg, Michael
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds