Return to search

MODELIZACIÓN DE LA VOLATILIDAD CONDICIONAL EN ÍNDICES BURSÁTILES : COMPARATIVA MODELO EGARCH VERSUS RED NEURONAL BACKPROPAGATION

El siguiente proyecto de tesis pretende mostrar y verificar cómo las redes neuronales, en concreto, la red backpropagation son una alternativa para la predicción de la volatilidad condicional frente a los modelos econométricos clásicos de la familia GARCH. El estudio se realiza para diferentes índices bursátilies de diferentes tamaños y zonas geográficas, así como para datos tanto diarios como de alta frecuencia utilizando para la comparativa uno de los modelos más extendidos para el estudio de la volatildiad condicional en índices bursátiles como el EGARCH, dada la existencia comprobada de asimetrías en la volatildiad de dichos índices. La elección de la red neuronal backpropagation viene motivada por ser una de las redes neuronales más extendidas en su uso en finanzas por su capacidad de generalización método de aprendizaje basada en la relga delta generalizada. / Oliver Muncharaz, J. (2014). MODELIZACIÓN DE LA VOLATILIDAD CONDICIONAL EN ÍNDICES BURSÁTILES : COMPARATIVA MODELO EGARCH VERSUS RED NEURONAL BACKPROPAGATION [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35803

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/35803
Date20 February 2014
CreatorsOliver Muncharaz, Javier
ContributorsGarcía García, Fernando, Guijarro Martínez, Francisco, Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses
PublisherEditorial Universitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
SourceRiunet
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds