Return to search

Estudo do potencial de biossorção dos íons Cd (II), Cu (II) e Zn (II) pela macrófita Eichhornia crassipes / Biosorption potential study of Cd (II), Cu (II) and Zn (II) by the macrophyte Eichhornia crassipes

Made available in DSpace on 2017-07-10T18:08:13Z (GMT). No. of bitstreams: 1
Fabio Luciano Lavarda.pdf: 1286405 bytes, checksum: 6e333d013ea649c1abc83af92614fc90 (MD5)
Previous issue date: 2010-02-19 / The aim of this work was to evaluate the adsorption capacity of Eichhornia crassipes as well as to investigate on the adsorption equilibrium and kinetic of copper, cadmium and zinc divalent ions in single, binary and ternary sorption systems. In order to improve the biosorption kinetic and experimental equilibrium conditions, the temperature effect on the plant drying was tested in 30 and 50°C temperatures, while the solution temperature effect was evaluated at four controlled temperatures, ranging from 25 to 45°C. The biosorbent grain size effect was also studied, using three fractional grain sizes between 0.147 to 0.589 mm and their mixture as well. For all tests, a volume of 50 mL for metal solution (4 mEq.L-1) was added to 250 mg dry plant in 125-mL Erlenmeyer flask. The mixtures were shaken for 12 h for each temperature setting, and then, the quantity of metal in each filtrated liquid phase sample was measured by AAS. In order to obtain the equilibrium time, the adsorption experimental times were set up at several short contact times, ranging from 5 min to 48 h. On the other hand, several batch single metal sorption experiments using the E. crassipes biomass as biosorbent were also carried out using a constant volume of 50 mL metal-supplied solution (4.0 mEq.L-1) in contact with dry biomass, ranging from 20 to 550 mg. Similarly, batch multicomponent sorption experiments, with equals and different amounts of metals spiked in biosorption medium, were performed in pH 5, during a 4 h shaking time. Within the dry temperature range tested, a higher metal removal performance was achieved for a temperature of 30oC. In the interval from 25 to 45oC controlled temperatures, the highest metal removal percent was observed to occur at 30oC solution temperature. On the other hand, the metal-sorption experiments based on fractional biomass grain sizes (0.147-0.589 mm) have not shown significant differences on the metal ion removal as compared among a mixture of them and different grain sizes tested. The results of monocomponent kinetic tests have showed that the equilibrium time was achieved around 2 h, 1 h and 45 min for Zn(II), Cu(II) and Cd(II), respectively. However, 1 and 2 h equilibrium time was achieved for Zn(II) and Cd(II), respectively, in a Zn(II)-Cd(II) binary system. In similar way, 1 and 2 h equilibrium time was achieved for Cu(II) and Cd(II), respectively, in a Cu(II)-Cd(II) binary system, while it was 45 min for both Zn(II) and Cu(II) in a Zn(II)-Cu(II) binary system. From the ternary kinetic test, equilibrium time of 45 min was observed for both Zn(II) and Cd(II), while a 1h equilibrium time was observed for Cu(II). The kinetic experimental data, at 30oC and pH 5, were found to best follow the pseudo-second order kinetic model, according to the good correlation coefficient value. The single equilibrium data for each metal at pH 5 were described according to the Langmuir isotherm model, with the same maximum metal content (qmax) values around 0.6 mEq.g-1 for all metals. While, the binary sorption data were evaluated through the Langmuir-type isotherms surface and their adjustable parameters were determined by the PSO (Particle Swarm Optimization) method. From the modeling results of the binary sorption data, the maximum metal contents were: 0.49 and 0.21 mEq.g-1 for Zn(II) and Cu(II), respectively, in Zn(II)-Cu(II) system; 0.42 and 0.17 mEq.g-1 for Cu(II) and Cd(II), respectively, in Cu(II)-Cd(II) system; 0.46 and 0.17 mEq.g-1 for Zn(II) and Cd(II), respectively, in Zn(II)-Cd(II) system. While, the maximum metal content values of 0.27, 0.65 and 0.30 mEq.g-1 were obtained for Zn(II), Cu(II) and Cd(II) ions, respectively, for a ternary sorption system. The kinetic and equilibrium adsorption results suggest that the E. crassipes biomass can be used as a low-cost, alternative biosorbent in metal treatment systems of industrial effluents. / O objetivo deste trabalho foi avaliar a capacidade de adsorção da macrófita Eichhornia crassipes, bem como investigar o equilíbrio e a cinética de adsorção dos íons divalentes cobre, cádmio e zinco, em sistemas monocomponentes, binários e ternários de sorção. A fim de melhorar a cinética de biossorção e as condições experimentais de equilíbrio, foi testado o efeito da temperatura de secagem da planta utilizando as temperaturas de 30 e 50°C, enquanto que o efeito da temperatura de sorção foi avaliada em quatro diferentes temperaturas, variando de 25 a 45°C. O efeito do tamanho dos grânulos do biossorvente também foi estudado utilizando-se três granulometrias, as quais estavam na faixa entre 0,147 e 0,589 mm e também foi testada a mistura dos grânulos sem ser peneirada. Para todos os testes, um volume de 50 mL de solução contendo os íons metálicos (4 mEq.L-1) foi colocada em contato com 250 mg de biomassa em erlenmeyers de 125 mL. As misturas foram agitadas por 12 h para cada ajuste de temperatura e, em seguida, as amostras foram filtradas e as quantidades de íons metálicos presentes na fase líquida foram medidas por espectrofotometria de absorção atômica. A fim de obter os tempos de equilíbrio foram realizados experimentos de adsorção em uma faixa de tempo variando de 5 min a 48 h. Também foram realizados testes batelada dos dados de equilíbrio utilizando a biomassa da E. crassipes como biossorvente em um volume constante de 50 mL de solução de metal (4,0 mEq.L-1) em contato com a biomassa seca, variando de 20 a 550 mg. Da mesma forma foram realizadas as bateladas experimentais de adsorção multicomponente, em pH 5, durante 4 horas de agitação. A temperatura de secagem da macrófita que obteve um desempenho maior na remoção dos íons metálicos foi a de 30°C. Para as temperaturas de sorção testadas no intervalo de 25 a 45°C, a percentagem mais elevada de remoção dos metais foi observada em 30°C. Por outro lado, os experimentos de sorção em várias granulometrias (0,147 a 0,589 mm) não mostraram diferenças significativas na remoção dos íons metálicos em relação à mistura delas ou entre as diferentes granulometrias testadas. Os resultados dos testes cinéticos monocomponentes mostraram que o tempo de equilíbrio foi alcançado em torno de 2 h, 1 h e 45 min para Zn (II), Cu (II) e Cd (II), respectivamente. No entanto, no sistema binário Zn(II)-Cd(II), os tempos de equilíbrio foram 1 e 2 h para o Zn(II) e para o Cd(II), respectivamente. De maneira similar, tempos de equilíbrio de 1 e 2 h também foram alcançados para o Cu(II) e para o Cd(II), respectivamente, no sistema binário Cu(II)-Cd(II) e de 45 min para ambos os íons Zn(II) e Cu(II) no sistema binário Zn(II)-Cu(II). A partir do teste cinético ternário foi possível observar que o tempo de equilíbrio para os íons Zn(II) e Cd(II) foram de 45 min, enquanto que para o Cu(II) o tempo de equilíbrio foi de 1h. Os dados experimentais da cinética em 30°C e em pH 5 foram melhor ajustados pelo modelo cinético de pseudo-segunda ordem de acordo com o valor do coeficiente de correlação obtido. Os dados de equilíbrio foram melhor descritos pela isoterma de Langmuir em pH 5 para todos os íons metálicos, obtendo os valores das capacidades máximas de sorção (qmax) em torno de 0,6 mEq.g-1 para todos os metais. Os dados de sorção para os sistemas binários foram avaliados através das isotermas de superfície de resposta pelo modelo de Langmuir e os parâmetros ajustáveis foram determinados pelo método PSO (Particle Swarm Optimization). A partir dos resultados obtidos na modelagem dos dados binários as capacidades máximas de sorção dos íons metálicos foram: 0,49 e 0,21 mEq.g-1 para o Zn(II) e o Cu(II), respectivamente, no sistema binário Zn(II)-Cu(II); 0,42 e 0,17 mEq.g-1 para o Cu(II) e o Cd(II), respectivamente, no sistema Cu(II)-Cd(II) e 0,46 e 0,17 mEq.g-1 para o Zn(II) e o Cd(II), respectivamente, no sistema Zn(II)-Cd(II). Enquanto que, para os sistema ternário, as capacidades máximas de sorção foram de 0,27; 0,65 e 0,30 mEq.g-1 para o Zn(II), o Cu(II) e o Cd(II), respectivamente. Os resultados obtidos na cinética de adsorção e de equilíbrio sugerem que a biomassa da E. crassipes pode ser utilizada com um baixo custo e é um biossorvente alternativo para o uso em sistemas de tratamento de efluentes industriais.

Identiferoai:union.ndltd.org:IBICT/oai:tede.unioeste.br:tede/1890
Date19 February 2010
CreatorsLavarda, Fábio Luciano
ContributorsMódenes, Aparecido Nivaldo, Quiñones, Fernando Rodolfo Espinoza, Mora, Nora Diaz, Vieira, Angélica Marquetotti Salcedo, Campos, Elvio Antonio de
PublisherUniversidade Estadual do Oeste do Parana, Programa de Pós-Graduação Stricto Sensu em Engenharia Química, UNIOESTE, BR, Desenvolvimento de Processos
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE, instname:Universidade Estadual do Oeste do Paraná, instacron:UNIOESTE
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0043 seconds