Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-23T20:34:27Z
No. of bitstreams: 1
ErnestoFerreira.pdf: 1744167 bytes, checksum: c125c90e5eb2aab2618350567f88cb31 (MD5) / Made available in DSpace on 2017-06-23T20:34:27Z (GMT). No. of bitstreams: 1
ErnestoFerreira.pdf: 1744167 bytes, checksum: c125c90e5eb2aab2618350567f88cb31 (MD5)
Previous issue date: 2016-03-08 / The development and the numerical stability analysis of a new adaptive critic algorithm to approximate the state-value function for online discrete linear quadratic regulator (DLQR) optimal control system design based on heuristic dynamic programming (HDP) are presented in this work. The proposed algorithm makes use of unitary transformations and QR decomposition methods to improve the online learning e-ciency in the critic network through the recursive least-squares (RLS) approach. The developed learning strategy provides computational performance improvements in terms of numerical stability and computational cost which aim at making possible the implementations in real time of optimal control design methodology based upon actor-critic reinforcement learning paradigms. The convergence behavior and numerical stability of the proposed online algorithm, called RLSµ-QR-HDP-DLQR, are evaluated by computational simulations in three Multiple-Input and Multiple-Output (MIMO) models, that represent the automatic pilot of an F-16 aircraft of third order, a fourth order RLC circuit with two input voltages and two controllable voltage levels, and a doubly-fed induction generator with six inputs and six outputs for wind energy conversion systems. / Neste trabalho, apresenta-se o desenvolvimento e a análise da estabilidade numérica de um novo algoritmo crítico adaptativo para aproximar a função valor de estado para o projeto do sistema de controle ótimo online, utilizando o regulador linear quadrático discreto (DLQR), com base em programação dinâmica heurística (HDP). O algoritmo proposto faz uso de transformações unitárias e métodos de decomposição QR para melhorar a e-ciência da aprendizagem online na rede crítica por meio da abordagem dos mínimos quadrados recursivos (RLS). A estratégia de aprendizagem desenvolvida fornece melhorias no desempenho computacional em termos de estabilidade numérica e custo computacional, que visam tornar possíveis as implementações em tempo real da metodologia do projeto de controle ótimo com base em paradigmas de aprendizado por reforço ator-crítico. O comportamento de convergência e estabilidade numérica do algoritmo online proposto, denominado RLSµ-QR-HDP-DLQR, são avaliados por meio de simulações computacionais em três modelos Múltiplas-Entradas e Múltiplas-Saídas (MIMO), que representam o piloto automático de uma aeronave F-16 de terceira ordem, um circuito de quarta ordem RLC com duas tensões de entrada e dois níveis de tensão controláveis, e um gerador de indução duplamente alimentados com seis entradas e seis saídas para sistemas de conversão de energia eólica.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2:tede/1687 |
Date | 08 March 2016 |
Creators | Ferreira, Ernesto Franklin Marçal |
Contributors | Fonseca Neto, João Viana da, Rêgo, Patrícia Helena Moraes |
Publisher | Universidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, Brasil, DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds