Cette thèse traite principalement des connaissances fondamentales en hydrodynamique et des caractéristiques des réactions gaz-liquide dans des microréacteurs capillaires. Dans une première partie, nous avons effectué des essais dans trois microcanaux circulaires en verre placés horizontalement. Les diamètres étudiés étaient de 302, 496 et 916 µm. Les arrivées de gaz et de liquide se font de manière symétrique et forme un angle de 120° entre elles. Une cartographie des écoulements diphasiques gaz-liquide a été systématiquement faite pour des vitesses du liquide comprises entre 0,1 et. 2 m/s et des vitesses du gaz comprises entre 0,01 et 50 m/s Ces essais mettent en évidence l'influence du diamètre des canaux, de la viscosité du liquide et de leur tension superficielle. Ces mesures ont été comparées avec les cartes décrivant les différents régimes d'écoulement (à bulles, en bouchons de Taylor, annulaires ou sous forme de mousse) et confrontés aux modèles de la littérature qui prédisent les transitions entre les différents régimes. Nous avons mis en évidence que ces derniers n'étaient pas totalement satisfaisant et en conséquence, un nouveau modèle de transition prenant en compte les effets de taille du canal, les propriétés physiques du liquide a été proposé. Les pertes de charge engendrées par ces écoulements gaz- ont été étudiées. Nous avons constaté que la chute de pression est très dépendante du régime d'écoulement. Cependant pour décrire l'évolution de la perte de charge il est commode de la scinder en trois régions: une où les forces de tension superficielle sont le paramètre prépondérant et qui correspond aux faibles vitesses superficielle du gaz, une zone de transition et une dans laquelle les forces d'inertie sont dominantes et qui correspond aux grandes vitesses superficielles du gaz. La prédiction de cette chute de pression dans la troisième zone a été faite à partir d'un modèle de Lockhart-Martinelli. Ce modèle qui prend en compte les flux de chaque phase dépend d'un paramètre semi empirique C. Nous avons proposé de le corréler avec les nombres de Reynolds correspondant à chacune des deux phases en présence. Cette méthode permet de bien rendre compte de nos mesures. Les caractéristiques hydrodynamiques en écoulement de Taylor ont été examinées. Il a été montré que la formation des bulles dans un écoulement de Taylor est dominée par un mécanisme d'étranglement en entrée du capillaire. La taille des bulles dépend fortement de la viscosité du liquide et la tension superficielle. La chute de pression dans cette zone, lorsque le nombre capillaire est relativement faible, peut assez être bien décrite par le modèle de Kreutzer modifiée par Walsh et al… En fin dans une dernière partie, nous avons réalisé une réaction chimique en écoulement de Taylor. L'oxydation du 2-hydrogéne-ethyltetrahydroanthraquinone (THEAQH2) pour former du peroxyde d'hydrogène a été expérimentalement étudiée dans un microcanal circulaire horizontal de 900 µm de diamètre et 30 cm de long. La présence d'une réaction chimique ne modifie que très peu les transitions entre les différents régimes d'écoulement ni l'évolution des pertes de charge. Les cinétiques de conversion du peroxyde d'hydrogène sont environ deux fois plus rapides celles obtenues dans les réacteurs gaz liquide utilisés habituellement. Mots-clés: microcanal, écoulement diphasiques, écoulement de Taylor, pertes de charge, réaction gaz-liquide. / This dissertation mainly deals with the fundamental knowledge of hydrodynamics and reaction characteristics in gas-liquid microreactors. Extensive experimental investigations have been performed in horizontal circular microchannels with diameter from 302 µm to 916 µm. Gas-liquid two-phase flow patterns in the microchannel have been systematic experimental investigated, in which the influence of channel diameters, liquid viscosities and surface tension were considered. Flow pattern regime maps in the present microchannels were developed, and the comparison with existing regime maps and flow pattern transition models in literature implied that transitions in present work could not be well predicted. As a result, a new transition model taking the effects of channel size, liquid physical properties into account was proposed. The gas-liquid two-phase pressure drop characteristics in microchannels were studied. It has been found that the pressure drop was highly flow patterns dependent, and the main trend can be divided into three regions: surface tension-dominated region, transitional region and inertia-dominated region. The pressure drop characteristics in surface tension-dominated and inertia-dominated region were discussed respectively. A modified Lockhart-Martinelli separated flow model in which the effects of channel diameter and liquid properties on the C-value are taken into account was proposed, and it showed a good agreement with respect to our experimental data and others' reported in literature. Hydrodynamics characteristics of Taylor flow have been examined. It was shown that the formation of Taylor flow was dominated by squeezing mechanism, on which the effects of liquid viscosity and surface tension were dramatically. The two-phase pressure drop of Taylor flow could be well predicted with the Kreutzer's model modified by Walsh et al., when capillary number was relatively low. Oxidation of hydrogenated 2-ethyltetrahydroanthraquinone (THEAQH2) in a horizontal circular microchannel have been experimental investigated. Results of visualization study on oxygen-anthraquinone working solution two-phase flow in microchannel showed that the flow pattern transition model and pressure drop model for inertia-dominated region proposed in this dissertation had good predicting accuracy. It was indicated that the gas-liquid interfacial area and space-time yield of hydrogen peroxide in the microchannel are at least one to two orders of magnitude higher than those in the conventional gas-liquid reactors. Keywords: microchannel, two-phase flow pattern, pressure drop, gas-liquid reaction, Taylor flow..
Identifer | oai:union.ndltd.org:theses.fr/2012GRENA028 |
Date | 31 October 2012 |
Creators | Zhang, Tong |
Contributors | Grenoble, Dalian Institute of Chemical Physics (Chine), Gonthier, Yves, Luo, Lingai, Wang, Shudong |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds