Dans ce projet de recherche, on s'intéresse au développement et à l'évaluation de nouvelles méthodes numériques pour les écoulements peu profonds. De nouvelles techniques de discrétisation spatiales et temporelles des équations sont proposées. La première partie de la thèse est dédiée au développement d'une méthode des volumes finis explicite d'ordre élevé et d'une famille de schémas semi-implicites qui sont efficaces pour la modélisation des processus lents et rapides dans les écoulements océaniques et atmosphériques. La deuxième partie du projet de recherche concerne la construction d'un schéma numérique efficace sans solveur de Riemann pour les écoulements peu profonds avec une topographie variable sur un maillage non structuré. Dans cette partie de la thèse, une nouvelle approche est proposée pour l'analyse de stabilité des schémas numériques non structurés pour les équations en eaux peu profondes. Dans la troisième partie de la thèse, deux schémas de volumes finis sont développés pour les lois de conservation sur des surfaces courbes qui ont un large potentiel d'être appliqués aux écoulements peu profonds sur la sphère. Dans ces cas, les schémas numériques sont développés en adoptant la démarche suivie par Stanley Osher. Cette démarche consiste à utiliser des systèmes hyperboliques simples qui génèrent des phénomènes d'ondes complexes et des solutions qui ont différentes structures. Ces solutions sont très efficaces pour tester les méthodes numériques. Dans notre cas, nous avons utilisé les équations de Burgers qui ont joué un rôle très important dans le développement des schémas numériques à capture de chocs en mécanique des fluides. / This research project focuses on the development and evaluation of numerical methods for shallow flows by proposing new spatial and temporal discretization techniques. First, a new high-order explicit finite volume method and a class of semi-implicit schemes are introduced which are effective for modelling fast and slow waves in oceanic and atmospheric flows. In the second part of the research project, a central-upwind scheme is proposed for shallow water flows on variable topography using unstructured grids. In this part of the project, a new approach is proposed for the stability analysis of unstructured numerical schemes for shallow water equations. In the third part of the thesis, two finite volume methods are developed for the conservation laws on curved geometries which are potentially applicable to shallow flows on a sphere. For such cases, numerical schemes are developed by using the approach followed by Stanley Osher. This approach employs simple hyperbolic systems which generate complex wave phenomena, and solutions that are effective for assessing numerical methods. In our case, Burgers’ equations are used since they have played an important role in the development of shock-capturing schemes in fluid mechanics.
Identifer | oai:union.ndltd.org:theses.fr/2015PA066355 |
Date | 09 July 2015 |
Creators | Beljadid, Abdelaziz |
Contributors | Paris 6, Université d'Ottawa, LeFloch, Philippe G., Mohammadian, Abdolmajid |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds