Return to search

Problèmes inverses pour l'équation de Newton-Einstein pluridimensionnelle

Nous étudions le problème de diffusion inverse et un problème inverse de valeurs au bord pour l'équation de Newton-Einstein pluridimensionnelle décrivant le mouvement d'une particule classique relativiste dans un champ externe électromagnétique <br />(ou gravitationnel) statique. Le cas d'une particule classique non relativiste est aussi considéré. Nous supposons que le champ externe est suffisamment régulier et suffisamment décroissant à l'infini. Tout d'abord on rappelle (et on développe) des résultats donnant l'existence et des propriétés de l'opérateur de diffusion. Puis on obtient, en particulier, l'asymptotique aux hautes énergies de l'opérateur de diffusion, et on montre que cette asymptotique détermine de manière unique (par des formules explicites) le champ externe. Enfin on obtient un théorème d'unicité à énergie fixée pour le problème inverse de valeurs au bord, et on en déduit, en particulier, qu'à énergie fixée suffisamment grande l'opérateur de diffusion détermine de manière unique le champ externe lorsque celui-ci est aussi supposé à support compact. Les résultats de cette thèse ont été obtenus en développant, en particulier, des méthodes de [Gerver-Nadirashvili, 1983] et [R. Novikov, 1999].

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00164558
Date06 July 2007
CreatorsJollivet, Alexandre
PublisherUniversité de Nantes
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds