Le domaine aéronautique étant en pleine expansion, il est nécessaire de trouver des solutions pour transporter plus de personnes tout en diminuant la consommation en carburant. L’allègement des aéronefs est un enjeu global, c’est pourquoi, il faut étudier comment diminuer la masse de tous les composants des avions. Les boitiers électroniques doivent faire partie de cette démarche d’allègement global des avions. Les sociétés du groupe SAFRAN et en particulier HISPANO-SUIZA se sont lancées dans un projet d’avion plus électrique et il est donc très important de diminuer la masse d’un boitier électronique. Une étude de boitiers électroniques existants a permis de mettre en évidence les principaux contributeurs de masse. Les bilans de masse ont montré que les éléments de protection et de maintien des composants électroniques représentaient la masse la plus importante pour un boitier. La recherche de solutions innovantes pour diminuer la masse de ces composants a mis en évidence des nouveaux matériaux pour remplacer l’aluminium omniprésent dans les boitiers actuels. Les stratifiés métaux / composites ou Fiber Metal Laminates (FML) sont des stratifiés composés de composites à matrice organique (carbone, fibre de verre, kevlar, …) et de tôles métalliques. Ces nouveaux matériaux composites sont particulièrement intéressants de par leurs propriétés thermomécaniques ainsi que leur conductivité électrique nécessaire au bon fonctionnement des boitiers en cas de passage de courant de foudre. Des simulations d’analyse modale ont validé la pertinence de l’emploi de ces FML pour réaliser les pièces de boitiers. Des modèles analytiques ont été mis en place pour prédire de façon simple et rapide le comportement de stratifiés composites en fonction du nombre de plis, des matériaux et des orientations. L’exploitation de ces modèles a permis de choisir des stratifiés prometteurs en fonction de leurs propriétés thermomécaniques : le Carall (assemblage de carbone et d’aluminium), le Glare (assemblage de fibres de verre) et un stratifié en carbone « classique ». La caractérisation de ces matériaux sous des chargements variés (statiques, dynamiques, en température, …) couplée à des simulations numériques a fourni les propriétés des stratifiés. La modélisation numérique des composites permettra de diminuer le temps et le coût nécessaires à la conception d’un boitier. L’étude et la comparaison des propriétés mesurées au cours des essais expérimentaux a permis de déterminer les applications potentielles des stratifiés métaux/composites dans les boitiers électroniques. Enfin, une étude de vieillissement accéléré en humidité et en température a été réalisée pour étudier l’évolution des propriétés des stratifiés dans le temps / The aeronautic field is growing years after years; this is why it is necessary to find solutions to transport more people and to reduce fuel consumption. The aircraft relief is a global issue, all components of aircraft ha to be lighter. Electronic devices must be a part of this global aircraft relief. The SAFRAN group and Hispano-Suiza in particular have engaged in a more electric aircraft project it is necessary to reduce the mass of an electronic box. A study of existing electronic boxes helped to highlight the main mass contributors. Mass analysis shows that the elements of protection and bearing of electronic components represent the highest global mass percent. The research of innovative solutions to reduce the weight of these components has highlighted new materials to replace the omnipresent aluminium in the current boxes. The composites Fibre Metal Laminates (FML) consist of organic matrix composites plies (carbon, fiberglass, Kevlar ...) and the metal sheet. These new composite materials are particularly interesting because of their thermo-mechanical and electrical conductivity necessary for the proper functioning of the electronic devices in case of lightning current. Modal analysis simulations validated the appropriateness of using these FML to replace aluminium in electronic boxes structure. Analytical models were developed to get a faster and easier the behaviour of composite laminates according to the number of plies, materials and orientations. The study of these analytical models has selected promising laminates according to their thermo mechanical properties: the Carall (assembly of carbon and aluminium), the Glare (assembly of glass fibers and aluminium) and carbon as a "classical" laminates. The characterization of these materials under various solicitations (static, dynamic, temperature ...) coupled with numerical simulations provided the laminates properties. Numerical modelling of composites will reduce the time and cost required to design a box. The study and comparison of measured properties during the experimental trials has identified the potential applications of metal laminates / composites in electronic boxes. Finally, a study of accelerated moisture and temperature aging was conducted to study the evolution properties of laminates in “real” environment
Identifer | oai:union.ndltd.org:theses.fr/2015LORR0043 |
Date | 07 January 2015 |
Creators | Bajolet, Julien |
Contributors | Université de Lorraine, Lipinski, Paul, Philippon, Sylvain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds