• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement de solutions thermomécaniques répondant au packaging de l’électronique de puissance en environnement aéronautique / Development of thermomechanical solutions for the power electronic packaging in aeronautical environment

Bajolet, Julien 07 January 2015 (has links)
Le domaine aéronautique étant en pleine expansion, il est nécessaire de trouver des solutions pour transporter plus de personnes tout en diminuant la consommation en carburant. L’allègement des aéronefs est un enjeu global, c’est pourquoi, il faut étudier comment diminuer la masse de tous les composants des avions. Les boitiers électroniques doivent faire partie de cette démarche d’allègement global des avions. Les sociétés du groupe SAFRAN et en particulier HISPANO-SUIZA se sont lancées dans un projet d’avion plus électrique et il est donc très important de diminuer la masse d’un boitier électronique. Une étude de boitiers électroniques existants a permis de mettre en évidence les principaux contributeurs de masse. Les bilans de masse ont montré que les éléments de protection et de maintien des composants électroniques représentaient la masse la plus importante pour un boitier. La recherche de solutions innovantes pour diminuer la masse de ces composants a mis en évidence des nouveaux matériaux pour remplacer l’aluminium omniprésent dans les boitiers actuels. Les stratifiés métaux / composites ou Fiber Metal Laminates (FML) sont des stratifiés composés de composites à matrice organique (carbone, fibre de verre, kevlar, …) et de tôles métalliques. Ces nouveaux matériaux composites sont particulièrement intéressants de par leurs propriétés thermomécaniques ainsi que leur conductivité électrique nécessaire au bon fonctionnement des boitiers en cas de passage de courant de foudre. Des simulations d’analyse modale ont validé la pertinence de l’emploi de ces FML pour réaliser les pièces de boitiers. Des modèles analytiques ont été mis en place pour prédire de façon simple et rapide le comportement de stratifiés composites en fonction du nombre de plis, des matériaux et des orientations. L’exploitation de ces modèles a permis de choisir des stratifiés prometteurs en fonction de leurs propriétés thermomécaniques : le Carall (assemblage de carbone et d’aluminium), le Glare (assemblage de fibres de verre) et un stratifié en carbone « classique ». La caractérisation de ces matériaux sous des chargements variés (statiques, dynamiques, en température, …) couplée à des simulations numériques a fourni les propriétés des stratifiés. La modélisation numérique des composites permettra de diminuer le temps et le coût nécessaires à la conception d’un boitier. L’étude et la comparaison des propriétés mesurées au cours des essais expérimentaux a permis de déterminer les applications potentielles des stratifiés métaux/composites dans les boitiers électroniques. Enfin, une étude de vieillissement accéléré en humidité et en température a été réalisée pour étudier l’évolution des propriétés des stratifiés dans le temps / The aeronautic field is growing years after years; this is why it is necessary to find solutions to transport more people and to reduce fuel consumption. The aircraft relief is a global issue, all components of aircraft ha to be lighter. Electronic devices must be a part of this global aircraft relief. The SAFRAN group and Hispano-Suiza in particular have engaged in a more electric aircraft project it is necessary to reduce the mass of an electronic box. A study of existing electronic boxes helped to highlight the main mass contributors. Mass analysis shows that the elements of protection and bearing of electronic components represent the highest global mass percent. The research of innovative solutions to reduce the weight of these components has highlighted new materials to replace the omnipresent aluminium in the current boxes. The composites Fibre Metal Laminates (FML) consist of organic matrix composites plies (carbon, fiberglass, Kevlar ...) and the metal sheet. These new composite materials are particularly interesting because of their thermo-mechanical and electrical conductivity necessary for the proper functioning of the electronic devices in case of lightning current. Modal analysis simulations validated the appropriateness of using these FML to replace aluminium in electronic boxes structure. Analytical models were developed to get a faster and easier the behaviour of composite laminates according to the number of plies, materials and orientations. The study of these analytical models has selected promising laminates according to their thermo mechanical properties: the Carall (assembly of carbon and aluminium), the Glare (assembly of glass fibers and aluminium) and carbon as a "classical" laminates. The characterization of these materials under various solicitations (static, dynamic, temperature ...) coupled with numerical simulations provided the laminates properties. Numerical modelling of composites will reduce the time and cost required to design a box. The study and comparison of measured properties during the experimental trials has identified the potential applications of metal laminates / composites in electronic boxes. Finally, a study of accelerated moisture and temperature aging was conducted to study the evolution properties of laminates in “real” environment
2

Étude et optimisation de procédés d’encapsulation de cellules photovoltaïques / Study and optimization of encapsulation processes for solar cells

Ogier, Stéphane 23 November 2017 (has links)
Les cellules photovoltaïques (PV) des modules ou panneaux solaires, sont protégées des agressions extérieures par des résines polymères encapsulantes qui, pour la plupart, sont des matériaux élastomériques réticulés. L’optimisation et le contrôle de l’étape d’encapsulation peut permettre un gain de productivité et augmenter la durée de vie des modules, ce qui réduit les coûts de l’électricité générée. Deux voies ont ainsi été explorées dans ce travail : 1) La première concerne l’étude de l’état de réticulation de l’encapsulant majoritairement utilisé actuellement, un copolymère d’éthylène et d’acétate de vinyle connu sous le nom d’EVA ; celui-ci est mis en œuvre sous forme de feuilles ou films. Une faible réticulation de l’encapsulant peut mener, entre autre, à son fluage lors de son utilisation, impactant directement la durée de vie du module. Il est donc important de suivre le niveau de réticulation de l’encapsulant lors des opérations de contrôle. La comparaison de différentes méthodes d’évaluation du degré de réticulation ont donc été menées ; 2) La deuxième voie concerne des études autour d’un nouveau procédé d’encapsulation. En effet, le procédé industriel actuel, inclut une étape dite de « lamination », pendant laquelle l’encapsulant est fondu et réticulé autour des cellules. Cette étape relativement longue crée des contraintes thermomécaniques pouvant limiter la durée de vie des modules PV. Le développement d’un nouveau procédé d’encapsulation où l’encapsulant en film est remplacé par un encapsulant liquide photopolymérisable permettrait de diminuer les coûts de production tout en augmentant potentiellement la durée de vie des modules. Les propriétés rhéologiques et la cinétique de polymérisation de ce nouvel encapsulant sont ainsi étudiées. Enfin les deux voies d’encapsulation sont comparées. Il a été montré que d’un point de vue des performances électriques le nouveau procédé présente un avantage potentiel et que d’un point de vue de la tenue au vieillissement il est équivalent au procédé industriel actuel / Photovoltaic (PV) cells, for solar modules or panels, are protected from environmental stresses by polymeric encapsulants, which are mostly crosslinked elastomers. The optimization and the control of the encapsulation step have a twofold interest by increasing PV module lifetime and productivity, thus leading to a decrease of the cost of generated electricity. Two main directions have been investigated in this work: 1) The first one is related to the study of the crosslinking degree of the main industrial PV polyolefin encapsulant, EVA, which is a copolymer composed of ethylene and vinyl acetate, used currently in film form. Indeed, poor crosslinking level can lead to its creep, impacting directly the module lifetime. To overcome this problem, the quality control needs to be improved, by the evaluation of the crosslinking degree obtained while using the conventional encapsulation process (through lamination of encapsulant foils). Thus, the comparison of several methods to evaluate this degree are led ;2) The second direction concerns the study of a new encapsulation process. Indeed, the conventional lamination process potentially creates mechanical stresses in the PV cells, which as a consequence may limit the PV module lifetime. Moreover, lamination requires a relatively long processing time. To overcome this problem, the development of a new encapsulation process using a photopolymerizable encapsulant, initially liquid, decreases the production costs of PV modules and potentially increases their lifetime. The rheology properties and the polymerization kinetics of the new encapsulant are studied. At the end of the present work, both encapsulation processes are compared. Electrical performances of PV cells are measured before and after encapsulation as well as before and after ageing cycles. It has been revealed that the new encapsulation process presents at least as good, if not better performances than the standard process, thus highlighting its big potential for the manufacturing of PV modules

Page generated in 0.0157 seconds