Nous présentons un modèle de division de cellules sanguines basé sur la présence d'un facteur appelé maturation et le partage du cycle en une phase de prolifération et une phase de repos. Il est représenté par un système S de deux équations de transport structuré en âge et maturité. En intégrant par rapport à l'âge, S devient un système d'équations aux dérivées partielles à retards structuré en maturité. Dans le chapitre 1, nous introduisons le contexte biologique, et nous présentons notre modèle. Dans le chapitre 2, nous étudions le modèle quand la phase de prolifération est fixe et la division est égale. Nous montrons l'existence et l'unicité puis un résultat liant les solutions aux cellules souches ainsi qu'un résultat d'invariance, de comportement asymptotique et d'instabilité. Dans le chapitre 3, nous supposons que la phase de prolifération varie suivant la maturité des cellules. Nous prouvons des résultats analogues au chapitre 2. Dans le chapitre 4, la phase de prolifération est fixe mais nous supposons la division inégale. En utilisant la théorie des opérateurs de Markov, nous prouvons un résultat de stabilité globale.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00001176 |
Date | 17 September 2001 |
Creators | Pujo-Menjouet, Laurent |
Publisher | Université de Pau et des Pays de l'Adour |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds