Return to search

Ανάλυση των χρηματιστηριακών δεδομένων με χρήση των αλγορίθμων εξόρυξης

Λόγω της έξαρσης της τεχνολογικής ανάπτυξης ο όγκος των πληροφοριών σήμερα είναι τεράστιος και έχει δημιουργήσει την ανάγκη για την ανάλυση και την επεξεργασία των δεδομένων ώστε, μετά την επεξεργασία, να μπορούν να μετατραπούν σε χρήσιμες πληροφορίες και να μας βοηθήσουν στη λήψη αποφάσεων. Οι τεχνικές εξόρυξης δεδομένων σε συνδυασμό με τις στατιστικές μεθόδους αποτελούν σπουδαίο εργαλείο για την ανάκτηση των συγκεκριμένων πληροφοριών. Η χρήση αυτών των πληροφοριών βοηθά στη μελέτη και κατ’επέκταση στην εξαγωγή των συμπερασμάτων για το χαρακτηριστικό που εξετάζεται. Ένας τομέας που παρουσιάζει μεγάλο ερευνητικό ενδιαφέρον, λόγω του όγκου των πληροφοριών που συσσωρεύει καθημερινά, είναι το χρηματιστήριο. Η εξόρυξη γνώσης από τα δεδομένα με σκοπό την όσο το δυνατόν «σωστή» πρόβλεψη μπορεί να αποφέρει πολύ μεγάλο κέρδος και αυτός είναι ένας λόγος για τον οποίο πολλές επιχειρήσεις έχουν επενδύσει στην τεχνολογία των πληροφοριών.Η παρούσα εργασία εδράζεται στο πλαίσιο της γενικής προσπάθειας τεχνικής ανάλυσης χρηματιστηριακών δεδομένων, εστιάζοντας παράλληλα στην ανάλυση με τη χρήση τεχνικών εξόρυξης. Το αντικείμενο της παρούσας διπλωματικής εργασίας είναι η ανάλυση των χρηματιστηριακών δεδομένων (χρονοσειρών) χρησιμοποιώντας τεχνικές εξόρυξης που μπορούν να βοηθήσουν στη λήψη των αποφάσεων. Συγκεκριμένα, στους στόχους της εργασίας περιλαμβάνεται η ομαδοποίηση παρόμοιων μετοχών, η εύρεση της κατηγορίας των μετοχών στην οποία μπορεί να ανήκει μία νέα μετοχή και η πρόβλεψη των μελλοντικών τιμών. Οι μελέτες αυτές εκτός από το χρηματιστήριο, μπορούν να εφαρμοστούν επίσης για την αναγνώριση των προτύπων, τη διαχείριση του χαρτοφυλακίου και τις χρηματοπιστωτικές αγορές. / The rapid development of technology has led to a large increase in the volume of information, creating the need for data analysis and processing. After processing, these data can be transformed into useful information that can help us to make decisions. The data mining techniques combined with the statistical methods are important tools for the recovery of such information. This information helps us to study the features and to extract information about them. The stock market is one of the greatest research areas of interest due to the volume of the information that accumulates daily. Knowledge extraction from data aiming the best possible prediction could yield significant profit, thus making information technology a magnet for corporate investment. This thesis is based on the general effort of technical analysis for stock market data, while focusing on analysis using data mining techniques. The present thesis aims to analyze stock data (time series) by applying data mining techniques which enable decision making. Specifically, the objectives of the work include the grouping of similar stocks, the determination of the class in which a new stock may belong and the prediction of the closing values of the stocks. Apart from the stock market, these studies can also be applied for the pattern recognition, portfolio management and financial markets.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/7802
Date10 June 2014
CreatorsΜπεγκόμ, Τζαχίντα
ContributorsΜεγαλοοικονόμου, Βασίλειος, Begum, Jaheda, Τσάντας, Νικόλαος, Μακρή, Ευφροσύνη
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0028 seconds