Το πρόβλημα της βελτιστοποίησης ερωτημάτων πολλαπλών κριτηρίων σε βάσεις δεδομένων είναι ένα αρκετά δύσκολο και ενδιαφέρον ερευνητικά πρόβλημα, διότι χαρακτηρίζεται από αντικρουόμενες απαιτήσεις. Κάθε βήμα στην απάντηση ενός ερωτήματος μπορεί να εκτελεστεί με παραπάνω από έναν τρόπους. Για την επίλυση τέτοιου είδους ερωτημάτων έχουν προταθεί διάφοροι αλγόριθμοι, με πιο πρόσφατους τους: Mariposa, M' και Generate Partitions. Ο Mariposa και ο Μ' εφαρμόζονται στην βάση δεδομένων Mariposa, η οποία δίνει την δυνατότητα στον χρήστη να καθορίζει την επιθυμητή εξισορόπηση (tradeoff) καθυστέρησης/κόστους για κάθε ερώτημα που θέτει. Ο αλγόριθμος Mariposa ακολουθεί μία προσέγγιση απληστίας (greedy approach) προσπαθώντας σε κάθε βήμα να μεγιστοποιήσει το «κέρδος» ενώ ο Μ' χρησιμοποιεί σύνολα βέτιστων κατά Pareto λύσεων για την επιλογή του επόμενου βήματος στην θέση του κριτηρίου απληστίας. Τέλος, ο αλγόριθμος Generate Partition χρησιμοποιεί έναν διαχωρισμό του χώρου απαντήσεων χρησιμοποιώντας δομές R-trees πετυχαίνοντας πολύ καλή απόδοση. / The optimization of queries in distributed database systems is known to be subject to delicate trade-offs. For example, the Mariposa database system allows users to specify a desired delay-cost tradeoff (that is to supply a decreasing function u(d) specifying how much the user is willing to pay in order to receive the query results within time d) Mariposa divides a query graph into orizontal strides analyzes each stride, and uses a greedy heuristic to find the best plan for all strides.
Identifer | oai:union.ndltd.org:upatras.gr/oai:nemertes:10889/531 |
Date | 24 September 2007 |
Creators | Ρήγα, Γεωργία |
Contributors | Ζαρολιάγκης, Χρήστος, Riga, Georgia, Ζαρολιάγκης, Χρήστος, Κακλαμάνης, Χρήστος, Γαλλόπουλος, Ευστράτιος |
Source Sets | University of Patras |
Language | gr |
Detected Language | Greek |
Type | Thesis |
Relation | Η ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. |
Page generated in 0.0023 seconds