• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 50
  • 20
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural Networks

Bhandare, Ashray Sadashiv January 2017 (has links)
No description available.
2

PC-Based Frame Optimizer Using Multiple PCM Files

Koh, Kwang-Ryul, Lee, Sang-Bum, Yi, Taek-Joon, Kim, Whan-Woo 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Many engineers have tried to detect and correct erroneous data in telemetry communications. The best source selector can be used to combine data from two or more bit synchronizers to reduce frame error rates. An error-correcting code can be used as well. These techniques are absolutely helpful to obtain reliable telemetry data. However, some errors still remain and must be removed. This paper introduces the way to effectively merge multiple PCM files that are saved in different receiving sites, and shows nearly errorless data resulting from merging flight test data using a PC-based frame optimizer, which is a developed program.
3

High Performance Analytics in Complex Event Processing

Qi, Yingmei 02 January 2013 (has links)
Complex Event Processing (CEP) is the technical choice for high performance analytics in time-critical decision-making applications. Although current CEP systems support sequence pattern detection on continuous event streams, they do not support the computation of aggregated values over the matched sequences of a query pattern. Instead, aggregation is typically applied as a post processing step after CEP pattern detection, leading to an extremely inefficient solution for sequence aggregation. Meanwhile, the state-of-art aggregation techniques over traditional stream data are not directly applicable in the context of the sequence-semantics of CEP. In this paper, we propose an approach, called A-Seq, that successfully pushes the aggregation computation into the sequence pattern detection process. A-Seq succeeds to compute aggregation online by dynamically recording compact partial sequence aggregation without ever constructing the to-be-aggregated matched sequences. Techniques are devised to tackle all the key CEP- specific challenges for aggregation, including sliding window semantics, event purging, as well as sequence negation. For scalability, we further introduce the Chop-Connect methodology, that enables sequence aggregation sharing among queries with arbitrary substring relationships. Lastly, our cost-driven optimizer selects a shared execution plan for effectively processing a workload of CEP aggregation queries. Our experimental study using real data sets demonstrates over four orders of magnitude efficiency improvement for a wide range of tested scenarios of our proposed A-Seq approach compared to the state-of-art solutions, thus achieving high-performance CEP aggregation analytics.
4

The Real-Time Multitask Threading Control

Han, Shuang January 2007 (has links)
<p>In this master thesis, we design and implemented a super mode for multiple streaming signal processing applications, and got the timing budget based on Senior DSP processor. This work presented great opportunity to study the real-time system and firmware design knowledge on embedded system.</p>
5

Integrated Distributed Power Management System for Photovoltaic

January 2014 (has links)
abstract: Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the PV system. The sub-panel MPPT increases the efficiency of the PV during the shading and replaces the bypass diodes in the panels with an integrated MPPT and DC-DC regulator. For the integrated MPPT and regulator, the research developed an integrated standard CMOS low power and high common mode range Current-to-Digital Converter (IDC) circuit and its application for DC-DC regulator and MPPT. The proposed charge based CMOS switched-capacitor circuit directly digitizes the output current of the DC-DC regulator without an analog-to-digital converter (ADC) and the need for high-voltage process technology. Compared to the resistor based current-sensing methods that requires current-to-voltage circuit, gain block and ADC, the proposed CMOS IDC is a low-power efficient integrated circuit that achieves high resolution, lower complexity, and lower power consumption. The IDC circuit is fabricated on a 0.7 um CMOS process, occupies 2mm x 2mm and consumes less than 27mW. The IDC circuit has been tested and used for boost DC-DC regulator and MPPT for photo-voltaic system. The DC-DC converter has an efficiency of 95%. The sub-module level power optimization improves the output power of a shaded panel by up to 20%, compared to panel MPPT with bypass diodes. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014
6

The Real-Time Multitask Threading Control

Han, Shuang January 2007 (has links)
In this master thesis, we design and implemented a super mode for multiple streaming signal processing applications, and got the timing budget based on Senior DSP processor. This work presented great opportunity to study the real-time system and firmware design knowledge on embedded system.
7

Efficiently Approximating Query Optimizer Diagrams

Dey, Atreyee 08 1900 (has links)
Modern database systems use a query optimizer to identify the most efficient strategy, called “query execution plan”, to execute declarative SQL queries. The role of the query optimizer is especially critical for the complex decision-support queries featured in current data warehousing and data mining applications. Given an SQL query template that is parametrized on the selectivities of the participating base relations and a choice of query optimizer, a plan diagram is a color-coded pictorial enumeration of the execution plan choices of the optimizer over the query parameter space. Complementary to the plan-diagrams are cost and cardinality diagrams which graphically plot the estimated execution costs and cardinalities respectively, over the query parameter space. These diagrams are collectively known as optimizer diagrams. Optimizer diagrams have proved to be a powerful tool for the analysis and redesign of modern optimizers, and are gaining interest in diverse industrial and academic institutions. However, their utility is adversely impacted by the impractically large computational overheads incurred when standard brute-force approaches are used for producing fine-grained diagrams on high-dimensional query templates. In this thesis, we investigate strategies for efficiently producing close approximations to complex optimizer diagrams. Our techniques are customized for different classes of optimizers, ranging from the generic Class I optimizers that provide only the optimal plan for a query, to Class II optimizers that also support costing of sub-optimal plans and Class III optimizers which offer enumerated rank-ordered lists of plans in addition to both the former features. For approximating plan diagrams for Class I optimizers, we first present database oblivious techniques based on classical random sampling in conjunction with nearest neighbor (NN) inference scheme. Next we propose grid sampling algorithms which consider database specific knowledge such as(a) the structural differences between the operator trees of plans on the grid locations and (b) parametric query optimization principle. These algorithms become more efficient when modified to exploit the sub-optimal plan costing feature available with Class II optimizers. The final algorithm developed for Class III optimizers assume plan cost monotonicity and utilize the rank-ordered lists of plans to efficiently generate completely accurate optimizer diagrams. Subsequently, we provide a relaxed variant, which trades quality of approximation, for reduction in diagram generation overhead. Our proposed algorithms are capable of terminating according to user given error bound for plan diagram approximation. For approximating cost diagrams, our strategy is based on linear least square regression performed on a mathematical model of plan cost behavior over the parameter space, in conjunction with interpolation techniques. Game theoretic and linear programming approaches have been employed to further reduce the error in cost approximation. For approximating cardinality diagrams, we propose a novel parametrized mathematical model as a function of selectivities for characterizing query cardinality behavior. The complete cardinality model is constructed by clustering the data points according to their cardinality values and subsequently fitting the model through linear least square regression technique separately for each cluster. For non-sampled data points the cardinality values are estimated by first determining the cluster they belong to and then interpolating the cardinality value according to the suitable model. Extensive experimentation with a representative set of TPC-H and TPC-DS-based query templates on industrial-strength optimizers indicates that our techniques are capable of delivering 90% accurate optimizer diagrams while incurring no more than 20% of the computational overheads of the exhaustive approach. Infact, for full-featured optimizers, we can guarantee zero error optimizer diagrams which usually require less than 10% overheads. Our results exhibit that (a) the approximation is materially faithful to the features of the exact optimizer diagram, with the errors thinly spread across the picture and Largely confined to the plan transition boundaries and (b) the cost increase at the non-sampled point due to assignment of sub-optimal plan is also limited. These approximation techniques have been implemented in the publicly available Picasso optimizer visualizer tool. We have also modified PostgreSQL’s optimizer to incorporate costing of sub-optimal plans and enumerating rank-ordered lists of plans. In addition to these, we have designed estimators for predicting the time overhead involved in approximating optimizer diagrams with regard to user given error bounds. In summary, this thesis demonstrates that accurate approximations to exact optimizer diagrams can indeed be obtained cheaply and consistently, with typical overheads being an order of magnitude lower than the brute-force approach. We hope that our results will encourage database vendors to incorporate the foreign-plan-costing and plan-rank-list features in their optimizer APIs.
8

Acceptabel och effektiv färgreducering i tryck : Utvärdering av färgreduceringsresultat från Alwan CMYK Optimizer ECO / Acceptable and efficient ink reduction in print : Evaluation of the result of ink reduction with Alwan CMYK Optimizer ECO

Forsell, Fredrik January 2012 (has links)
Tryckeribranschen är en ekonomiskt pressad bransch som söker nya besparingsmetoder. En av metoderna är att minska insatsvaran tryckfärg med färgreduceringsprogramvara. Rapporten undersöker möjligheterna med färgreduceringssystem. Detta genom att studera hur man använder sig av färgreducering och hur det påverkar trycket. Studien avser besvara: • Hur stor färgminskning kan man använda sig av utan negativa konsekvenser på bildkvalitén? • Hur går man tillväga för att skapa den färgminskningen? • Överensstämmer total färgförändring och visuell bedömning av tryck? För att få svar på dessa frågor togs en testform fram med nödvändiga bilder och färgfält som sedan genomgick en rad färgreduktioner. Testformen utvärderades digitalt med avseende på TAC och total färgförändring. Därefter trycktes testformen och utvärderades visuellt av en testgrupp och uppmättes för att visa färgförändring efter tryck. Resultatet av undersökningen visar att det går att färgreducera tryck utan avsevärda negativa konsekvenser på bildkvalitén. En reducering från 300 % TAC till en TAC mellan 240 % och 210 % är fullt möjlig för att få en besparing och vara inom standard för total färgförändring. Detta går att göra väldigt lätt med en programvara som Alwan CMYK Optimizer ECO, med enbart förvalda inställningar och en inställd Total Ink Limit mellan 240 % och 210 %. Resultatet visade även en stark korrelation mellan den visuella bedömningen och den totala färgförändring, som tyder att både metoder är lämpliga för bedömning av tryck.
9

Analysis and simulation of shading effects on photovoltaic cells / Analysis and simulation of shading effects on photovoltaic cells

Gallardo Saavedra, Sara January 2016 (has links)
The usage of conventional energy applications generates disproportionate emissions of greenhouse gases and the consumption of part of the energy resources available in the world. It has become an important problem which has serious effects on the climatic change. Therefore, it is crucial to reduce these emissions as much as possible. To be able to achieve this, renewable energy technologies must be used instead of conventional energy applications. Solar Photovoltaic (PV) technologies do not release greenhouse gas emissions directly and can save more than 30 million tonnes of carbon per exajoule of electricity generated relative to a natural gas turbine running at 45% efficiency. Shadowing is one of the most important aspects that affects the performance of PV systems. Consequently, many investigations through this topic are being done in order to develop new technologies which mitigate the impact of shadowing during PV production. In order to minimise the impact of shadowing it is desired to be able to predict the performance of a system with PV-modules during shadowing. In this thesis a simulation program for calculating the IV-curve for series connected PV-modules during partial shadowing has been developed and experimentally validated. PV systems modelling and simulation in LTspice environment has been presented and validated by means of a comparative analysis with the experimental results obtained in a set of tests performed in the laboratory of Gävle University. Experimental measurements were carried out in two groups. The first group corresponds with the experiments done in the string of six modules with bypass diodes while the measurements of the second group have been performed on a single PV module at HIG University. The simulation results of both groups demonstrated a remarkable agreement with the experimental data, which means that the model designed at LTspice supposes a very useful tool that can be used to study the performance of PV systems. This tool contributes to the investigations in this topic and it aims to benefit future installations providing a better knowledge of the shading problem. The master’s thesis shows an in-depth description of the required method to design a PV cell, a PV module and a PV array using LTspice IV and the input parameters as well as the needed tests to adjust the models. Moreover, it has been carried out a pedagogical study describing the effect that different shadow configurations have in the performance of solar cells. This study facilitates the understanding of the performance of PV modules under different shadowing effects. Lastly, it has also been discussed the benefits of installing some newer technologies, like DC-DC optimizers or module inverters, to mitigate the shadowing effects. The main conclusion about this topic has been that although most of the times the output power will be increased with the use of optimizers sometimes the optimizer does not present any benefits.
10

'n Ondersoek na en bydraes tot navraaghantering en -optimering deur databasisbestuurstelsels / L. Muller

Muller, Leslie January 2006 (has links)
The problems associated with the effective design and uses of databases are increasing. The information contained in a database is becoming more complex and the size of the data is causing space problems. Technology must continually develop to accommodate this growing need. An inquiry was conducted in order to find effective guidelines that could support queries in general in terms of performance and productivity. Two database management systems were researched to compare die theoretical aspects with the techniques implemented in practice. Microsoft SQL Sewer and MySQL were chosen as the candidates and both were put under close scrutiny. The systems were researched to uncover the methods employed by each to manage queries. The query optimizer forms the basis for each of these systems and manages the parsing and execution of any query. The methods employed by each system for storing data were researched. The way that each system manages table joins, uses indices and chooses optimal execution plans were researched. Adjusted algorithms were introduced for various index processes like B+ trees and hash indexes. Guidelines were compiled that are independent of the database management systems and help to optimize relational databases. Practical implementations of queries were used to acquire and analyse the execution plan for both MySQL and SQL Sewer. This plan along with a few other variables such as execution time is discussed for each system. A model is used for both database management systems in this experiment. / Thesis (M.Sc. (Computer Science))--North-West University, Potchefstroom Campus, 2007.

Page generated in 0.0461 seconds