• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Current Sensors to measure small current signals of pico-amperes to nano-amperes in magnitude

SINGH, ARUN 22 April 2008 (has links)
No description available.
2

A Behavioral Model of a Built-in Current Sensor for IDDQ Testing

Gharaibeh, Ammar 14 January 2010 (has links)
IDDQ testing is one of the most effective methods for detecting defects in integrated circuits. Higher leakage currents in more advanced semiconductor technologies have reduced the resolution of IDDQ test. One solution is to use built-in current sensors. Several sensor techniques for measuring the current based on the magnetic field or voltage drop across the supply line have been proposed. In this work, we develop a behavioral model for a built-in current sensor measuring voltage drop and use this model to better understand sensor operation, identify the effect of different parameters on sensor resolution, and suggest design modifications to improve future sensor performance.
3

Characterization of Ambient Noise and Design of Current Sensors for High-Frequency Noise

Chang, Ming-Hui 13 October 2005 (has links)
High population density and the presence of many more motorcycles than cars make the noise environment in Taiwan different from that in other countries. There is growing concern about the electromagnetic effects within this environment. The electromagnetic environment is unique and the information about radio noise is not sufficient at this time. The interference of wireless communication system may be caused by the noise environment. Thus, we need to consider the influence that the noise causes. With the measured radio noise, the minimum suggested receive power in an urban environment ranges from 354 MHz to 426 MHz. It is analyzed by the means of Cumulative Distribution Function (CDF), Amplitude Probability Distribution (APD), Noise Amplitude Distribution (NAD), Pulse Duration Distribution (PDD), Pulse Spacing Distribution (PSD) and Average Crossing Rate (ACR). We measured the properties of noise at an urban center, a nearby port, and a freeway exit, which are located in the same city, and on a hill lying adjacent to the city. We chose an urban center and a nearby hill as the noise environment for the following reasons: (a) The noise margin at urban areas is smaller than that at suburban and rural areas. (b) The coverage of the measurement on a hill is larger than that in a city. (c) The relation of the noise environment between a hill and an urban center can be obtained. The statistical distributions of the four particular noise environments are shown and design constraints for a broadcasting system are revealed. Secondly, we also provide a technology for designing miniature Rogowski coils on glass substrates to obtain current sensors for high operating frequencies in this thesis. The coils are useful for measurement of a small current on a microstrip line at high frequencies. In our experiments, a 50 Ohm microstrip line is driven by an input voltage of 100 mV. A frequency as high as 6 GHz has been used. The highest frequency is limited by the oscilloscope available to us. Geometric effects of the device were investigated to obtain the sufficient output voltage at high frequencies. The induced output voltage can approach approximately 7 mV by modifying the structure of Rogowski coils. At the same time, On-chip solenoid inductors for high frequency magnetic integrated circuits are proposed. The eddy current loss was reduced by dividing the inductor into three consecutive inductors connected in series. The inductor has an inductance of 1.1 nH and the maximum quality factor (Qmax) of 50.5. The self-resonant frequency and the operating frequency at Qmax are greater than 17.5 GHz and 16.7 GHz, respectively.
4

PCB-Embedded Phase Current Sensor and Short-Circuit Detector for High Power SiC-Based Converters

Mocevic, Slavko January 2018 (has links)
Nowadays, major public concern is concentrated on reducing the usage of fossil fuels and reducing emissions of CO₂ by different energy advancement. Electric vehicle technology presents extremely effective way of reducing carbon emissions and paves the way of having sustainable and renewable energy future. In order to wear the cost of electric vehicles down, batteries have to be improved as well as higher power density and high reliability has to be achieved. This research work mainly focuses on achieving higher power density and higher reliability of the inverter stage by utilizing wide-bandgap SiC MOSFET semiconductor devices in electric vehicle application. In order to achieve higher reliability of the inverter stage, high bandwidth, high performance Rogowski coil switch current sensors are employed. These sensor were embedded on the PCB and integrated on the gate driver. High bandwidth switch current sensor measurement is used for fast short-circuit detection and protection of the SiC MOSFET semiconductor switches. Furthermore, comparison with conventional detection and protection method used in automotive IGBT applications is shown where novel protection showed superior performance. This thesis also shows principle of how to obtain phase currents of the system using Rogowski coil switch current sensor measurements. Digital reconstruction principle is employed to obtain the phase currents. Accurate and linear current sensor is achieved. By successfully realizing this integrated phase current measurement on the gate driver, elimination of the commercial current sensors from the system is possible. By eliminating existing phase current sensors, higher power density could be achieved. Sensor is evaluated in both continuous and discontinuous PWM schemes. / Master of Science / Together with renewable sources, electric vehicle will play an important role as a part of sustainable and renewable energy future by significantly reducing emissions of CO₂ into the atmosphere. In order to make electric cars more acceptable and accessible and make a significant impact on the environment, cost must be lowered down. To wear the cost of the electric vehicles down, powertrain of the car must be significantly improved and made smaller as well as lighter. This thesis mainly focuses on improving the reliability of the motor driving stage by implementing novel protection during fault periods such as short-circuit event. Furthermore, this novel protection allows current sensing that is crucial for motor control during normal operation periods. This will enable more compact motor driving stage since existing current sensing elements can be eliminated.
5

Integrated Distributed Power Management System for Photovoltaic

January 2014 (has links)
abstract: Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the PV system. The sub-panel MPPT increases the efficiency of the PV during the shading and replaces the bypass diodes in the panels with an integrated MPPT and DC-DC regulator. For the integrated MPPT and regulator, the research developed an integrated standard CMOS low power and high common mode range Current-to-Digital Converter (IDC) circuit and its application for DC-DC regulator and MPPT. The proposed charge based CMOS switched-capacitor circuit directly digitizes the output current of the DC-DC regulator without an analog-to-digital converter (ADC) and the need for high-voltage process technology. Compared to the resistor based current-sensing methods that requires current-to-voltage circuit, gain block and ADC, the proposed CMOS IDC is a low-power efficient integrated circuit that achieves high resolution, lower complexity, and lower power consumption. The IDC circuit is fabricated on a 0.7 um CMOS process, occupies 2mm x 2mm and consumes less than 27mW. The IDC circuit has been tested and used for boost DC-DC regulator and MPPT for photo-voltaic system. The DC-DC converter has an efficiency of 95%. The sub-module level power optimization improves the output power of a shaded panel by up to 20%, compared to panel MPPT with bypass diodes. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014
6

Évaluation non-destructive quantitative de structures aéronautiques par la méthode des courants de Foucault / Quantitative non-destructive estimation of aeronautical structures by the eddy currents technique

Cung, Thành Long 22 June 2012 (has links)
La méthode des courants de Foucault (CF) est très largement utilisée en milieu industriel pour l’évaluation non destructive (END) de pièces ou de structures électriquement conductrices, parce qu’elle est sensible, robuste peu couteuse et non polluante. Toutefois, dans le cas général, l’évaluation quantitative des paramètres caractéristiques d’une structure est un problème difficile, d’une part parce que les données CF disponibles sont généralement incomplètes, d’autre part parce qu’il est nécessaire de faire appel à des modèle numériques élaborés pour rendre compte des interactions sonde / structure, et enfin, parce que le problème inverse consistant à estimer les paramètres de la structure à partir de la connaissance des interactions physiques et des données CF disponibles est « mal posé ».Dans cette thèse, nous nous intéressons au problème particulier de l’évaluation de jeux entre pièces dans un assemblage métallique. Pour contourner les difficultés liées à la mise en oeuvre de l’évaluation quantitative par CF, nous avons choisi de placer nos travaux dans un cadre multifréquence afin d’enrichir les données d’observation fournies par la sonde, et d’adopter une démarche consistant à élaborer des modèles comportementaux issus de l’analyse statistique des interactions sonde / structure. Partant de l’analyse de l’effet d’un jeu apparaissant entre les plaques d’un assemblage de plaques d’aluminium sur la variation de l’impédance normalisée de la sonde, menée expérimentalement et par simulations à l’aide de codes éléments finis, nous avons tout d’abord bâti un modèle comportemental approché d’interactions reposant sur la linéarité de la relation observée dans une bande de fréquences d’examen liée aux dimensions de la structure étudiée. Dans ce cadre, nous avons proposé, implanté et discuté des performances de plusieurs algorithmes de résolution du problème inverse, permettant d’estimer le jeu entre pièces et l’épaisseur de la pièce « cachée » de l’assemblage. Ensuite, nous avons étendu l’approche proposée à l’aide de réseaux de neurones artificiels, puis appliqué la méthode comportementale proposée à un second problème : celui de la caractérisation de fissures de fatigue réelles dans des pièces massives. Les résultats obtenus inclinent à considérer que la démarche proposée est généralisable à d’autres configurations en END par CF. / The eddy current (EC) method is widely used in the industry for the nondestructive evaluation (NDE) of electrically conductive structures, because it is sensitive, robust, cost effective and non polluting. However, in the general case, the quantitative evaluation of the parameters of a structure is a difficult problem, because the available EC data are generally incomplete, because it is necessary to have numerical models developed to account for the probe / structure interactions, and finally, because the inverse problem which consists in estimating the parameters of an inspected structure from the knowledge of those physical interactions and the available EC data is "ill-posed".In this work, we focus on the evaluation of air gaps between the parts of a metallic assembly. In order to cope with the difficulties associated with the implementation of an EC quantitative evaluation, we choose to use a multi-frequency approach so as to increase the data provided by the EC probe, and to build behavioral models from the statistical analysis of the probe / structure interactions. Experimental data and simulated data based on finite elements modeling are analyzed. A first approach behavioral model of the probe/structure interactions is deduced from these analyses, which is based on the linear relationship observed (in a particular excitation an frequency band depending on the dimensions of the studied structure) between the variations of the sensor normalized impedance and the air gap to evaluate. Moreover, we propose, implement and discuss the performances of several algorithms designed to solve the inverse problem dealing with the estimation of both the multilayered structure air gap and "hidden" plate thicknesses. Then, we extend the proposed multi-frequency behavioral approach thanks to artificial neural networks, and we apply the proposed behavioral method to a second problem : that of the characterization of real fatigue cracks in metallic massive parts. The obtained results let the generalization of the proposed approach to other EC NDE configurations to be envisaged.
7

Development of a new generation of electric current sensors through advances in manufacturing techniques and material design

Swafford, Robert D. 13 January 2014 (has links)
Electrical systems have become ubiquitous, and with them come the need to accurately monitor electric current. The aerospace industry is no exception. Modern aircraft may contain more than one hundred current sensors, each one critical to a properly functioning vehicle. While these sensors function acceptably, several areas have been identified for improvement: size, weight, and cost. Each sensor is bulky, taking up valuable space. They are also costly to manufacture. The existing design is based on the Hall effect, and has remained fundamentally unchanged for decades. With the recent progress in manufacturing techniques and materials, it would be beneficial to reexamine these sensors and determine if improvements can be made using the accomplishments of recent years. Of particular interest are microelectromechanical systems, also known as MEMS. Using a sensor based on MEMS technologies in which design, function, and fabrication are closely intertwined would automatically meet two of the three goals: reducing size and weight. MEMS additionally have the potential to allow existing systems to be miniaturized. Also of interest are advanced materials, some of which can behave as transducers, linking different physical phenomenon. The goal of this dissertation is to use advances in manufacturing techniques and materials, specifically those discussed above, to design a better current sensor. As part of this goal, several potential solutions were studied and optimized. Finally, proof-of-concept prototypes were fabricated and tested to validate the feasibility of the designs and offer insight into continued sensor development.
8

Caractérisation et modélisation de matériaux magnétiques pour capteurs de courant. / Modeling and characterization of magnetic materials for current sensors.

Dhahbi, Hakim 09 April 2018 (has links)
Le sujet concerne l’étude de capteurs d’alimentation utilisés dans les disjoncteurs de Schneider Electric qui doivent fonctionner de plus en plus à fréquences variables. On s’intéresse notamment aux « pertes fer », en s’appuyant sur leur caractérisation et leur modélisation. L’étude s’appuie sur l’amélioration du modèle LS dans le but de son intégration dans le dimensionnement du capteur. Le modèle est intégré en post traitement sur Flux®, une application en temps réel a donc été développée afin d’intégrer les pertes dans la simulation du capteur et de son environnement. Une analyse expérimentale du comportement du circuit magnétique du capteur a aussi été entreprise d’une part en intégrant de nouveaux matériaux et d’autre part en tenant compte des procédés de fabrications et des conditions de fonctionnement du capteur. Aussi une étude calorimétrique a été menée afin de mesurer les pertes fer du capteur expérimentalement et de mettre en place des mesures références à comparer avec les résultats de simulations. Enfin, deux missions principales ont été entreprises et restent à finaliser : une nouvelle méthode du modèle LS statique et un dispositif expérimental, un calorimètre, a été conçu et testé mais des améliorations restent à réaliser. / The topic of this study involves power sensors used in Schneider Electrics circuit breakers that should operate increasingly at variable frequencies. We are particularly focusing on "iron losses” through their characterization and modelling. The study is based on the improvement of the LS model in order to use it in the dimensioning of the sensor. The model is integrated in Flux® as post-processing; therefore an application has been developed that includes Ls model iron losses at each time step in the simulation of the sensor and its environment. An experimental analysis of the behaviour of the sensors magnetic circuit was also conducted by integrating new materials on the one hand and by considering the manufacturing processes and operating conditions of the sensor on the other hand. Furthermore, a calorimetric study was conducted to measure the iron losses of the sensor experimentally and to state reference measurements to compare with the results of simulations. Finally, two main missions have been engaged and remain to be finalized: a new method of the static LS model and an experimental bench, a calorimeter, has been designed and tested, but still to be improved.
9

Nekonvenční metody měření proudu a napětí / Non-standard methods of current and voltage measurements

Talába, Michal January 2017 (has links)
This work brings a study about non-conventional methods of voltage and current measurement, followed by a creation of magneto-resistive material based current sensor prototype, suitable for medium voltage switchgear from ABB. Outcome of the study is description of physical principle and the measurement principle of non-conventional methods. Outcome of the experimental part is a current sensor based on magneto-resistive component, which can measure magnetic field generated around a wire with flowing primary current. Through the magnetic field, the sensor can measure primary current flowing in the wire. Sensor was measured in range 0 – 1000 A, and its accuracy and linearity was approximately 6%. The main contribution of this work is the confirmation that this non-conventional method works for measurement of high currents. Based on the outcome, ABB can decide whether is this technology suitable for its product portfolio.
10

Univerzální řídicí jednotka pro testování životnosti motorů / Universal control unit for life test of motors

Ševčík, Šimon January 2016 (has links)
This thesis describes theway of BPM motors control and its use in life testing. Firstly it describes the properties of motors and their differences. Secondly it describes possibilities of motor control and their need for life testing. Finally it describes proposal of the universal control unit, types of controling, programming part and technical documentations.

Page generated in 0.0498 seconds