Η RNase P είναι το ένζυμο που ωριμάζει το 5΄ άκρο των πρόδρομων μορίων tRNA, ενώ έχει βρεθεί και στις τρεις φυλογενετικές περιοχές, καθώς και σε υποκυτταρικά οργανίδια. Είναι ριβονουκλεοπρωτεϊνικής φύσεως στις περισσότερες περιπτώσεις, ενώ έχουν βρεθεί και ένζυμα RNase P αποκλειστικά πρωτεϊνικής φύσεως. Η υπομονάδα RNA των βακτηριακών ολοενζύμων είναι καταλυτικά ενεργή απουσία πρωτεϊνικών παραγόντων in vitro, καθιστώντας την ένα πραγματικό ριβοένζυμο. Η ικανότητα της RNase P να αναγνωρίζει συγκεκριμένες δομές στα μόρια των υποστρωμάτων της και όχι αλληλουχίες, δημιούργησε τη δυνατότητα χρήσης αυτού του ενζύμου ως ενός μοριακού εργαλείου για τη στόχευση πολλών ιικών και παθολογικών μορίων RNA in vitro και in vivo, καταστέλλοντας την έκφραση των μορίων αυτών, μέσω της τεχνολογίας των μορίων EGS (external guide sequence) και των ριβοενζύμων M1GS.
Η RNase P, σύμφωνα με πολλές μελέτες, έχει δειχθεί ότι αποτελεί στόχο πολλών φαρμακευτικών παραγόντων, συμπεριλαμβανομένων πολλών γνωστών αντιβιοτικών, οι οποίοι κατά κύριο λόγο αναστέλλουν τη δραστικότητα του ενζύμου. Πρόσφατα δείχτηκε, μέσω αναλυτικής κινητικής μελέτης, ότι ένα μακρολίδιο, η σπιραμυκίνη, ενεργοποιεί σημαντικά τη δραστικότητα της βακτηριακής RNase P και του M1 RNA κατά ένα δοσοεξαρτώμενο τρόπο, λειτουργώντας έτσι ως μη-ειδικός ενεργοποιητής μικτού τύπου. Μέχρι σήμερα, στη διεθνή βιβλιογραφία, δεν έχει αναφερθεί άλλη ουσία η οποία προκαλεί θετική επίδραση στη δραστικότητα της RNase P. Στην παρούσα μελέτη, αρχικά μελετήθηκε η ενεργοποίηση της δραστικότητας της βακτηριακής RNase P και αποκαλύφθηκε ότι η σπιραμυκίνη δεν αλληλεπιδρά με ιοντικούς δεσμούς με το μόριο Μ1 RNA, αλλά προκαλεί αλλαγή διαμόρφωσης στο δομικό στοιχείο P10/11 του ριβοενζύμου. Το δομικό αυτό στοιχείο εμπλέκεται στην αναγνώριση του υποστρώματος, αποτέλεσμα το οποίο έρχεται σε συμφωνία με τις τιμές KD που προσδιορίστηκαν για το σύμπλοκο ριβοενζύμου–υποστρώματος, απουσία και παρουσία σπιραμυκίνης.
Με δεδομένο ότι η σπιραμυκίνη δεν επηρεάζει την πρωτεϊνοσύνθεση ή τη δραστικότητα της RNase P των ευκαρυωτικών κυττάρων, κατασκευάστηκε ένα ριβοένζυμο M1GS, ώστε να ελεγχθεί η επίδραση του αντιβιοτικού στη δραστικότητα αυτού του ριβοενζύμου in vivo, σε καλλιεργούμενα ανθρώπινα κύτταρα ΗΕΚ293. Ως στόχος του συγκεκριμένου M1GS, επιλέχτηκε ο μεταγραφικός παράγοντας Ets2 λόγω της μεγάλης κλινικής σημασίας του, εφόσον έχει συσχετιστεί με αρκετούς τύπους καρκίνου και παθολογικές καταστάσεις, καθώς και με διαδικασίες διαφοροποίησης. Ο σπουδαίος ρόλος του Ets2, σε συνδυασμό με τα ελλιπή δεδομένα σχετικά με την έκφρασή του, είχαν αποτρέψει μέχρι σήμερα την αποτελεσματική στόχευσή του με τη χρήση των υπαρχουσών μεθοδολογιών που βασίζονται στο RNA, όπως το RNAi.
Μετά από ανάλυση της δευτεροταγούς δομής του Ets2 mRNA, σχεδιάστηκαν δύο οδηγοί αλληλουχίες. Οι αλληλουχίες αυτές, αρχικά, δοκιμάστηκαν ως εξωτερικές οδηγοί αλληλουχίες (EGS) σε συνδυασμό με το βακτηριακό ολοένζυμο της RNase P. Η EGS303 (το νούμερο υποδεικνύει το νουκλεοτιδικό κατάλοιπο του στόχου που δρα η RNase P), εμφάνισε τη μεγαλύτερη ικανότητα να επάγει τη δράση της RNase P in vitro. Η οδηγός αυτή αλληλουχία, στη συνέχεια κλωνοποιήθηκε στο 3΄ άκρο του M1 RNA, παράγοντας το ριβοένζυμο M1GS303, το οποίο είναι δραστικό έναντι του μορίου–στόχου του in vitro. Η δραστικότητα του συγκεκριμένου ριβοενζύμου ενεργοποιείται εντυπωσιακά κατά 160% παρουσία σπιραμυκίνης. Προκειμένου να ελεγχθεί η δραστικότητα αυτού του ριβοενζύμου in vivo, το μόριο–στόχος και το ριβοένζυμο εκφράστηκαν ελεγχόμενα σε κύτταρα E. coli, προκαλώντας μείωση της έκφρασης του μορίου–στόχου από το M1GS303 κατά 95% μετά από 12 ώρες έκφρασης των μορίων. Μείωση στα ίδια επίπεδα ανιχνεύτηκε μόλις μετά από 4 ώρες έκφρασης εφόσον στα κύτταρα είχε προστεθεί σπιραμυκίνη, γεγονός που υποστηρίζει την εντυπωσιακά θετική επίδραση της σπιραμυκίνης επί της δραστικότητας του ριβοενζύμου.
Η ίδια σειρά πειραμάτων επαναλήφθηκε σε ευκαρυωτικά κύτταρα, με έκφραση του ριβοενζύμου σε HEK293 κύτταρα. Η δραστικότητα του ριβοενζύμου προσδιορίστηκε ποιοτικά και ποσοτικά, από την έκφραση της χιμαιρικής φθορίζουσας πρωτεΐνης Ets2–EGFP (μόριο–στόχος), σε διαφορετικούς χρόνους έκφρασης. Παρατηρήθηκε ότι το M1GS δρα αποτελεσματικά έναντι του μορίου–στόχου του και σε ευκαρυωτικά κύτταρα in vivo, προκαλώντας μείωση στην έκφραση του Ets2, η οποία αυξάνεται επιπλέον παρουσία σπιραμυκίνης. Τα παραπάνω αποτελέσματα δείχνουν τη σημαντική ενεργοποίηση της δραστικότητας του M1GS σε ανθρώπινα κύτταρα και καθιστούν τη σπιραμυκίνη ένα σημαντικό ενεργοποιητή στη χρήση των ριβοενζύμων M1GS ως εργαλεία γονιδιακής αποσιώπησης. Ο συνδυασμός βελτιωμένων ριβοενζύμων M1GS με την παρουσία σπιραμυκίνης αυξάνει ακόμα περισσότερο την πρακτική χρήση της συγκεκριμένης τεχνολογίας τόσο in vitro όσο και in vivo, επιτυγχάνοντας ακόμα πιο αποτελεσματική αποσιώπηση της γονιδιακής έκφρασης. / RNase P is the enzyme that endonucleolytically cleaves the precursor tRNA transcripts to produce their mature 5΄ ends. It has been found in all three phylogenetic domains of life, as well as in subcellular organelles. In most cases, it has been described as a ribonucleoprotein complex. However, few RNase P enzymes that are exclusively proteinaceous have been also reported recentrly. The RNA subunit of bacterial holoenzyme is catalytically active in the absence of protein factors in vitro, making it a true ribozyme. The ability of RNase P to recognize specific structures in its substrate molecules instead of specific sequences, allowed the use of this enzyme as a molecular tool for targeting pathological and viral RNA molecules in vitro and in vivo, by suppressing gene expression through the technology of EGS (external guide sequence) and M1GS ribozymes.
RNase P, according to numerous studies, has been the target of several pharmaceutical agents, including most of the mainstream antibiotics. It has been shown recently, through analytical kinetic studies that the macrolide spiramycin significantly enhances the activity of bacterial RNase P and M1 in a dose dependent manner, acting as a non-specific mixed-type activator. Until now, no other compound has been reported to induce a positive effect on RNase P activity. In the present study, the enhancement of bacterial RNase P activity by spiramycin was tested initially, and it was revealed that spiramycin does not interact with the M1 RNA molecule through ionic bonds. On the contrary, it induces a conformational change of the P10/11 structural element of M1 RNA, which is mainly responsible for substrate recognition. The above results are in agreement with the KD values determined for the ribozyme-substrate complex, in the absence or in the presence of spiramycin.
Since spiramycin does not affect eucaryotic protein synthesis or eucaryotic RNase P activity, an M1GS ribozyme was constructed, in order to examine the effect of spiramycin on the ribozyme activity in vivo, using human HEK293 cells. The target of this M1GS was the transcription factor Ets2, a factor with great clinical importance, since it has been associated with several types of cancer and disease, as well as essential processes during differentiation. The important role of Ets2 in combination with the lack of data on Ets2 expression, had hitherto prevented its effective targeting by using the existing methodologies based on RNA, such as RNAi.
After analysis of the secondary structure of Ets2 mRNA, two guide sequences were designed. These sequences were originally tested in trans as external guide sequences (EGS), in combination with the bacterial RNase P. The EGS303 (the number indicates the nucleotide residue cleaved by RNase P), showed an ability to induce RNase P activity in vitro. The guide sequence was then cloned and fused into the 3' end of M1 RNA ribozyme, thus producing the M1GS303 ribozyme, which was found to be effective against the target molecule. The activity of this specific ribozyme is impressively enhanced by 160% in the presence of spiramycin. In order to examine the activity of this ribozyme in vivo, the expression of the target molecule and the ribozyme were induced in E. coli cells. After 12 hours of expression, a reduced level of the target molecule was detected, because of the M1GS303 activity (about 95%). Reduction to similar levels was observed after only 4 hours from the induction of both molecules expression, in the presence of spiramycin. This observation strongly supports spiramycin’s striking positive effect on the ribozyme activity.
The same set of experiments was repeated in human HEK293 cells. The activity of the ribozyme was determined qualitatively and quantitatively, by the determination of the expression of the chimeric fluorescent protein Ets2-EGFP (target molecule) at different times of expression. The M1GS ribozyme cleaves efficiently the target molecule in human cells as well in vivo, resulting in a reduction in the expression of Ets2, which is further increased in the presence of spiramycin. This result indicates the significant activation of M1GS activity in human cells, making spiramycin an important activator in using M1GS ribozymes as tools in gene silencing. The combination of improved M1GS ribozymes in the presence of spiramycin, further increases the practical utilization of this technology both in vitro and in vivo, thus achieving an even more effective suppression in gene expression.
Identifer | oai:union.ndltd.org:upatras.gr/oai:nemertes:10889/8783 |
Date | 28 May 2013 |
Creators | Τουμπέκη, Χρυσαυγή |
Contributors | Δραΐνας, Διονύσιος, Toumpeki, Chrisavgi, Δραΐνας, Διονύσιος, Μουζάκη, Αθανασία, Σταθόπουλος, Κωνσταντίνος, Συνετός, Διονύσιος, Μοσχονάς, Νικόλαος, Λυγερού, Ζωή, Καλλία-Ραυτοπούλου, Σοφία |
Source Sets | University of Patras |
Language | gr |
Detected Language | Greek |
Type | Thesis |
Rights | 0 |
Relation | Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. |
Page generated in 0.0043 seconds