Return to search

On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear Parabolic Equations

A class of Lagrange-Newton-SQP methods is investigated for optimal control problems
governed by semilinear parabolic initial- boundary value problems. Distributed and boundary
controls are given, restricted by pointwise upper and lower bounds. The convergence of the method
is discussed in appropriate Banach spaces. Based on a weak second order sufficient optimality condition
for the reference solution, local quadratic convergence is proved. The proof is based on the
theory of Newton methods for generalized equations in Banach spaces.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199800995
Date30 October 1998
CreatorsTröltzsch, Fredi
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, application/postscript, text/plain, application/zip

Page generated in 0.0022 seconds