由於誤差與人口數成反比,資料多寡影響統計分析的穩定性及可靠性,因此常用於推估大區域人口的方法,往往無法直接套用至縣市及其以下層級,尤其當小區域內部地理、社會或經濟的異質性偏高時,人口推估將更為棘手。本文以兩個面向對臺灣小區域人口進行探討:其一、臺灣人口結構漸趨老化,勢必牽動政府政策與資源分配,且臺灣各縣市的人口老化速度不一,有必要針對各地特性發展適當的小區域人口推估方法;其二、因為壽命延長,全球皆面臨長壽風險(Longevity Risk)的挑戰,包括政府退休金制度規劃、壽險保費釐定等,由於臺灣各地死亡率變化不盡相同,發展小區域死亡率模型也是迫切課題。
小區域推估面臨的問題大致可歸納為四個方向:「資料品質」、「地區人數」、「資料年數」與「推估年數」,資料品質有賴資料庫與制度的建立,關於後三個問題,本文引進修勻(Smoothing, Graduation)等方法來提高小區域推估及小區域死亡模型的穩定性。人口推估方面結合修勻與區塊拔靴法(Block Bootstrap),死亡率模型的建構則將修勻加入Lee-Carter與Age-Period-Cohort模型。由於小區域人口數較少,本文透過標準死亡比(Standard Mortality Ratio)及大區域與小區域間的連貫(Coherence),將大區域的訊息加入小區域,降低因為地區人數較少引起的震盪。
小區域推估通常可用的資料時間較短,未來推估結果的震盪也較大,本文針對需要過去幾年資料,以及未來可推估年數等因素進行研究,希冀結果可提供臺灣各地方政府的推估參考。研究發現,參考大區域訊息有穩定推估的效果,修勻有助於降低推估誤差;另外,在小區域推估中,如有過去十五年資料可獲得較可靠的推估結果,而未來推估年數盡量不超過二十年,若地區人數過少則建議合併其他區域增加資料量後再行推估;先經過修勻而得出的死亡率模型,其效果和較為複雜的連貫模型修正相當。 / The population size plays a very important role in statistical estimation, and it is difficult to derive a reliable estimation for small areas. The estimation is even more difficult if the geographic and social attributes within the small areas vary widely. However, although the population aging and longevity risk are common phenomenon in the world, the problem is not the same for different countries. The aim of this study is to explore the population projection and mortality models for small areas, with the consideration of the small area’s distinguishing characteristic.
The difficulties for small area population projection can be attributed into four directions: data quality, population size, number of base years, and projection horizon. The data quality is beyond the discussion of this study and the main focus shall be laid on the other three issues. The smoothing methods and coherent models will be applied to improve the stability and accuracy of small area estimation. In the study, the block bootstrap and the smoothing methods are combined to project the population to the small areas in Taiwan. Besides, the Lee-Cater and the age-period-cohort model are extended by the smoothing and coherent methods.
We found that the smoothing methods can reduce the fluctuation of estimation and projection in general, and the improvement is especially noticeable for areas with smaller population sizes. To obtain a reliable population projection for small areas, we suggest using at least fifteen-year of historical data for projection and a projection horizon not more than twenty years. Also, for developing mortality models for small areas, we found that the smoothing methods have similar effects than those methods using more complicated models, such as the coherent models.
Identifer | oai:union.ndltd.org:CHENGCHI/G0098354025 |
Creators | 金碩, Jin, Shuoh |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0023 seconds