如何透過視覺化探索勢力消長情形,是近年來頻繁被探討的問題,常見之做法會針對帶有時間屬性的時間關聯資料 (time-oriented data)來進行觀察,而以社群媒體為例,重大議題通常是透過意見領袖提出具有關鍵性之觀點,而得以分歧出新議題並吸引其他社群媒體上之閱聽人加入討論,上述之過程牽涉評論之階層資料其層次隨著時間變化分歧與合併,然而,能夠透過視覺化之方式同時觀察上述特性有其挑戰性。本篇論文將針對階層式資料提出一套整合方式,稱為TopicWave,特別是帶有時間變化屬性的資料,希望透過改良動態圖形視覺化工具,結合 Sunburst 與 ThemeRiver Graph,實作 Facebook 上公開文章之評論(comments)行為隨時間變化的趨勢,而透過直覺式互動功能之設計。透過案例分析和使用者測試,本論文提出的方法能清楚呈現評論關係隨時間之變化與階層式結構,達到組合式創新之效果。 / In recent research, it is a frequently asked question about how to explore the topic trend during a time interval. If we want to analysis and discuss this question, time-oriented data will be the most appropriate dataset. For example, on social media platform, major issues are commonly formed by opinion leaders, people will be attracted by opinion leaders and join in the commentary on a topic. The above-mentioned procedure will involve in commentary hierarchy level increasing or decreasing while time changes, however, it is challenging when we want to explore these properties using traditional visualization techniques. We propose TopicWave, a visualization design that combines ThemeRiver Graph (time-oriented visualization) and Sunburst (hierarchical data visualization). It can visualize the trend of a post’s comment on Facebook Page. TopicWave can clearly present hierarchy and time-varying trend of a Facebook post’s comment data at the same time through the intuitive design of interactive on visualization.
Identifer | oai:union.ndltd.org:CHENGCHI/G0102753015 |
Creators | 熊凱文, Hsiung, Kai Wen |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0018 seconds