本篇論文主要考慮成群資料的存活分析,其特點為群內個體間具有相關性,並假定群內個體具有相同但無法觀測到的事故傾向。首先,探討事故傾向服從任一連續分配時混合Weibull迴歸模式的特性,接著,推導出事故傾向服從血Inverse Gaussian吧時之混合Weibull模式,並介紹參數的估計問題。然後,推導出群內個體是否獨立之分數檢定統計量,以分別就兩種最常見的存活資料型態一完整型態與右設限型態:檢定模式中事故傾向的效應是否存在。最後,並以實例說明分數檢定之程序。 / In this paper, we study survival analysis for grouped data, where the within group correlations are considered. It is also assumed that individuals within the same group share a common but unobservable random frailty. First, we discuss the properties of the Weibull regression model mixed by any continuous distribution. Next, we derive an Inverse Gaussan mixture of Weibull regression model, and discuss the estimation problem. Then, we derive the score test for testing independence between components within the same group, where the two most common cases are discussed the complete data case and the right censoring case. Finally, the testing procedures are illustrated by two examples.
Identifer | oai:union.ndltd.org:CHENGCHI/A2002001360 |
Creators | 黃(糸秀)琪, Huang,Hsiu-Chi |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0021 seconds