近年來隨著網際網路快速發展和社群網站的盛行,社群網站已成為許多名人、明星、公司、機關團體等與一般使用者溝通的新管道,其中很常見的就是透過建立臉書(Facebook)粉絲頁的方式來發佈消息更新狀況,一般使用者可藉由臉書平台來快速獲取名人動態或產品資訊等與其他網友之評論與意見,透過網路社群經營與粉絲頁建立已成為許多名人、公司企業與團體進行行銷、發表意見與粉絲互動的重要管道。
不僅於此,當重大公共事件發生時,許多臉書粉絲頁也會成為訊息與意見傳播的重要管道,所以許多傳播研究學者紛紛投入研究粉絲頁所發佈的貼文內容與來源,其中一個重點就是粉絲頁貼文所引用的外部網站內容。本論文針對轉發超連結的貼文以及大量貼文內含的超連結作處理,透過網址擷取和網址還原技術(URL unshorten)的應用加以分析統計,以供傳播研究學者快速了解粉絲頁貼文內容分布狀況,並藉此了解在不同情境下的社交媒體策略以及與粉絲之間的互動關係。另外為優化本系統效能,對於排程分析工作中提出並導入了「排程資料處理機制」,可顯著降低重覆分析貼文的次數,以提升資料分析的效率。 / Nowadays, social networking sites have become the new media for many celebrities, groups and business to communicate in societies and worldwide. Many celebrities, groups and business post their new status through Facebook fan pages and users can get status about celebrities or product information through Facebook immediately. Creating a Facebook fan page is an amazing way to promote business and build closer relationship with audiences and customers.
Besides, during the outbreak a public event, many fan pages would become important sources of news and information dissemination. Thus, many Humanities and Social Sciences scholars are eager to investigate the sources and contents of posts in fan pages. In particular, many posts contain hyperlinks pointing to outside news or information sources. This thesis design and implement a fan page content analyzer, focusing on hyperlinks analysis. By parsing URLs and URL unshortening, our tool offers hyperlink analysis for scholars to get quick overview about fan page feeds and to understand how they cite news or information from various sources. In addition, our tool is equipped with an aggregated data sharing mechanism to avoid parsing redundant feeds, thus being able to improve the performance of the tool.
Identifer | oai:union.ndltd.org:CHENGCHI/G0102971014 |
Creators | 李燕宜, Lee, Yen I |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0017 seconds