本研究的主要目的是希望喚起國內、外學者對演化科學在經濟學上的重視,結合電腦、生物科技、心理學與數學於經濟學中,希望對傳統經濟學上因簡化假設而無法克服的實際經濟問題,可以利用電腦模擬技術獲得解決,並獲取新知與技能。
本研究共有六章,第一章為緒論,敘述緣由與研究動機。第二章介紹傳統經濟學的缺失,再以資料掘取知識及智慧系統建構金融市場。第三章則介紹各種不同人工智慧的方法以模擬金融市場的投資策略。第四章建立無結構性變遷時間序列模型--交易策略電腦模擬分析,僅以遺傳演算法模擬金融市場的投資策略,分別由投資組合、交易成本、調適性、演化、與統計的觀點對策略作績效評分析。第五章則建立簡單的結構性變遷模型,分別由調適性與統計的觀點,採取遺傳演算法再對投資策略進行有效性評估分析。第六章則利用資料掘取知識與智慧系統結合計量經濟學的方法,建構遺傳演算法發展投資策略的步驟,以台灣股票市場的資料進行實証研究,分別就投資策略、交易成本、調適性與演化的觀點作分析。最後一章則為結論。
未來研究的方向有:
1. 其他各種不同人工智慧的方法的比較分析,如人工神經網路、遺傳規劃法等進行績效的交叉比較分析。
2. 利用分類系統(Classifier System)與模糊邏輯的方法,改善標準遺傳演算法對策略編碼的效率,並建構各種不同的複雜策略以符合真實世界的決策過程。
3. 建構其他人工時間資料的模擬比較分析,例如ARCH (Autoregressive Conditional Heteroskedasticity)模型、Threshold 模型、 確定性(Deterministic) 模型等其他時間序列模型與更複雜的結構性變遷模型。
4. 進一步研究遺傳演算法所使用的完整資訊(例如,各種不同指標的選取)。
5. 本研究係採用非即時分析系統(Offline System),進一步研究即時分析系統 (Online Sysetem)在實務上是有必要的。 / Historically, the study of economics has been advanced by a combination of empirical observation and theoretic development. The analysis of mathematical equilibrium in theoretical economic models has been the predominant mode of progress in recent decades. Such models provide powerful insights into economic processes, but usually make restrictive assumptions and appear to be over simplifications of complex economic system. However, the advent of cheap computing power and new intelligent technologies makes it possible to delve further into some of the complexities inherent in the real economy. It is now feasible to create a rudimentary form of “artificial economic life”.
First, we build the framework of artificial stock markets by using data mining and intelligent system. Second, in order to analyze competition among buyers and sellers in the artificial market, we introduce various methods of artificial intelligence to design trading rules, and investigate how machine-learning techniques might be applied to search the optimal investment strategy. Third, we create a miniature economic laboratory to build the artificial stock market by genetic algorithms to analyze investment strategies, by using real and artificial data, which consider both structural change and nonstructural change cases. Finally, we use statistical analysis to examine the performance of the portfolio strategies generated by genetic algorithms.
Identifer | oai:union.ndltd.org:CHENGCHI/A2002000468 |
Creators | 林維垣 |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0026 seconds