L'Analyse de Données Fonctionnelles est une extension de l'analyse de données traditionnelles à des individus décrits par des fonctions. Le travail présenté ici s'inscrit pleinement dans ce courant, et tente de faire la jonction entre le domaine de la statistique fonctionnelle, et celui des techniques "neuronales" classiques. L'extension du perceptron multi-couches (PMC) à des espaces fonctionnels, proposé dans ce travail, apporte une réponse naturelle au traitement d'individus de type fonctions. Deux approches distinctes sont ici présentées : une approche par traitement direct des fonctions d'entrée et une approche par projection sur une base topologique de l'espace fonctionnel considéré (méthode classique en Analyse de Données Fonctionnelles). Pour chacune de ces deux méthodes, on montre dans un premier temps que le modèle est un approximateur universel, i.e. que toute fonction continue définie sur un compact d'un espace fonctionnel peut être approchée arbitrairement bien par un PMC fonctionnel. Dans un deuxième temps, on s'intéresse aux propriétés de consistance de l'estimateur fonctionnel. L'originalité de ce résultat vient du fait que non seulement l'estimation s'effectue sur un nombre fini d'individus (les fonctions observées), mais que de plus chacune de ces fonctions n'est connue qu'en un nombre fini de points d'observation (discrétisation). Un point important à noter est que ce résultat s'appuie sur une modélisation aléatoire du design des fonctions d'entrée. Enfin, on montre que le modèle peut encore être adapté afin d'obtenir une réponse fonctionnelle, ce qui autorise le traitement de processus fonctionnels à temps discret. L'approximation universelle et la consistance de l'estimateur (dans le cas i.i.d) sont encore vérifiées.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00178892 |
Date | 18 December 2002 |
Creators | Conan-Guez, Brieuc |
Publisher | Université Paris Dauphine - Paris IX |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds