Aquesta tesi doctoral està emmarcada en el camp de l'astrodinàmica. Presenta solucions a problemes identificats en el disseny de missions que utilitzen òrbites entorn dels punts de libració, fent servir la teoria de sistemes dinàmics.El problema restringit de tres cossos és un model per estudiar el moviment d'un cos de massa infinitessimal sota l'atracció gravitatòria de dos cossos molt massius. Els cinc punts d'equilibri d'aquest model, en especial L1 i L2, han estat motiu de nombrosos estudis per aplicacions pràctiques en les últimes dècades (SOHO, Genesis...). Genèricament, qualsevol missió en òrbita al voltant del punt L2 del sistema Terra-Sol es veu afectat per ocultacions degudes a l'ombra de la Terra. Si l'òrbita és al voltant de L1, els eclipsis són deguts a la forta influència electromagnètica del Sol. D'entre els diferents tipus d'òrbites de libració, les òrbites de Lissajous resulten de la combinació de dues oscil.lacions perpendiculars. El seu principal avantatge és que les amplituds de les oscil.lacions poden ser escollides independentment i això les fa adapatables als requeriments de cada missió. La necessitat d'estratègies per evitar eclipsis en òrbites de Lissajous entorn dels punts L1 i L2 motivaren la primera part de la tesi. En aquesta part es presenta una eina per la planificació de maniobres en òrbites de Lissajous que no només serveix per solucionar el problema d'evitar els eclipsis, sinó també per trobar trajectòries de transferència entre òrbites d'amplituds diferents i planificar rendez-vous. Per altra banda, existeixen canals de baix cost que uneixen els punts L1 i L2 d'un sistema donat i representen una manera natural de transferir d'una regió de libració a l'altra. Gràcies al seu caràcter hiperbòlic, una òrbita de libració té uns objectes invariants associats: les varietats estable i inestable. Si tenim present que la varietat estable està formada per trajectòries que tendeixen cap a l'òrbita a la qual estan associades quan el temps avança, i que la varietat inestable fa el mateix però enrera en el temps, una intersecció entre una varietat estable i una d'inestable proporciona un camí asimptòtic entre les òrbites corresponents. Un mètode per trobar connexions d'aquest tipus entre òrbites planes entorn de L1 i L2 es presenta a la segona part de la tesi, i s'hi inclouen els resultats d'aplicar aquest mètode als casos dels problemes restringits Sol Terra i Terra-Lluna.La idea d'intersecar varietats hiperbòliques es pot aplicar també en la cerca de camins de baix cost entre les regions de libració del sistema Sol-Terra i Terra-Lluna. Si existissin camins naturals de les òrbites de libració solars cap a les lunars, s'obtindria una manera barata d'anar a la Lluna fent servir varietats invariants, cosa que no es pot fer de manera directa. I a l'inversa, un camí de les regions de libració lunars cap a les solars permetria, per exemple, que una estació fos col.locada en òrbita entorn del punt L2 lunar i servís com a base per donar servei a les missions que operen en òrbites de libració del sistema Sol-Terra. A la tercera part de la tesi es presenten mètodes per trobar trajectòries de baix cost que uneixen la regió L2 del sistema Terra-Lluna amb la regió L2 del sistema Sol-Terra, primer per òrbites planes i més endavant per òrbites de Lissajous, fent servir dos problemes de tres cossos acoblats. Un cop trobades les trajectòries en aquest model simplificat, convé refinar-les per fer-les més realistes. Una metodologia per obtenir trajectòries en efemèrides reals JPL a partir de les trobades entre òrbites de Lissajous en el model acoblat es presenta a la part final de la tesi. Aquestes trajectòries necessiten una maniobra en el punt d'acoblament, que és reduïda en el procés de refinat, arribant a obtenir trajectòries de cost zero quan això és possible. / This PhD. thesis lies within the field of astrodynamics. It provides solutions to problems which have been identified in mission design near libration points, by using dynamical systems theory. The restricted three body problem is a well known model to study the motion of an infinitesimal mass under the gravitational attraction of two massive bodies. Its five equilibrium points, specially L1 and L2, have been the object of several studies aimed at practical applications in the last decades (SOHO, Genesis...). In general, any mission in orbit around L2 of the Sun-Earth system is affected by occultations due to the shadow of the Earth. When the orbit is around L1, the eclipses are caused by the strong electromagnetic influence of the Sun. Among all different types of libration orbits, Lissajous type ones are the combination of two perpendicular oscillations. Its main advantage is that the amplitudes of the oscillations can be chosen independently and this fact makes Lissajous orbits more adaptable to the requirements of each particular mission than other kinds of libration motions. The need for eclipse avoidance strategies in Lissajous orbits around L1 and L2 motivated the first part of the thesis. It is in this part where a tool for planning maneuvers in Lissajous orbits is presented, which not only solves the eclipse avoidance problem, but can also be used for transferring between orbits having different amplitudes and for planning rendez-vous strategies.On the other hand, there exist low cost channels joining the L1 and L2 points of a given sistem, which represent a natural way of transferring from one libration region to the other one. Furthermore, there exist hyperbolic invariant objects, called stable and unstable manifolds, which are associated with libration orbits due to their hyperbolic character. If we bear in mind that the stable manifold of a libration orbit consists of trajectories which tend to the orbit as time goes by, and that the unstable manifold does so but backwards in time, any intersection between a stable and an unstable manifold will provide an asymptotic path between the corresponding libration orbits. A methodology for finding such asymptotic connecting paths between planar orbits around L1 and L2 is presented in the second part of the dissertation, including results for the particular cases of the Sun-Earth and Earth-Moon problems. Moreover, the idea of intersecting hyperbolic manifolds can be applied in the search for low cost paths joining the libration regions of different problems, such as the Sun-Earth and the Earth-Moon ones. If natural paths from the solar libration regions to the lunar ones was found, it would provide a cheap way of transferring to the Moon from the vicinity of the Earth, which is not possible in a direct way using invariant manifolds. And the other way round, paths from the lunar libration regions to the solar ones would allow for the placement of a station in orbit around the lunar L2, providing services to solar libration missions, for instance. In the third part of the thesis, a methodology for finding low cost trajectories joining the lunar L2 region and the solar L2 region is presented. This methodology was developed in a first step for planar orbits and in a further step for Lissajous type orbits, using in both cases two coupled restricted three body problems to model the Sun-Earth-Moon spacecraft four body problem. Once trajectories have been found in this simplified model, it is convenient to refine them to more realistic models. A methodology for obtaining JPL real ephemeris trajectories from the initial ones found in the coupled models is presented in the last part of the dissertation. These trajectories need a maneuver at the coupling point, which can be reduced in the refinement process until low cost connecting trajectories in real ephemeris are obtained (even zero cost, when possible).
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/5927 |
Date | 24 July 2007 |
Creators | Canalias Vila, Elisabet |
Contributors | Masdemont Soler, Josep, Universitat Politècnica de Catalunya. Escola d'Enginyeria de Telecomunicació i Aerospacial de Castelldefels |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. |
Page generated in 0.0026 seconds