La médecine s’intéresse de plus en plus à des systèmes nanométriques visant la détection précoce de cellules malignes, le traitement de ces dernières ou la compréhension de mécanismes biologiques. Des nanoparticules fluorescentes et des nanocristaux harmoniques aux propriétés non-linéaires intéressantes ont été étudiés comme agents de contraste pour l’imagerie biomédicale.Dans ce travail, nous avons recherché un matériau non-centrosymétrique dont la matrice permet un dopage d’ions lanthanides afin de développer des sondes multifonctionnelles, c’est-à-dire à la fois luminescentes et harmoniques. Nous nous sommes orientés vers l’iodate de lanthane de phase alpha, α-La(IO3)3, non-centrosymétrique. Dans un premier temps, nous avons développé des synthèses hydrothermales assistées par micro-ondes pour permettre de cristalliser la phase alpha et produire des particules de taille nanométrique (< 100 nm). La présence de nombreux pseudo-polymorphes nécessite le contrôle précis des paramètres de synthèse, en particulier de la température de synthèse, pour obtenir exclusivement des nanoparticules de α-La(IO3)3. L’étude de différents intermédiaires réactionnels (La(IO3)3(OH2), La(IO3)2.66(OH)0.33) nous a permis de mettre en évidence une transformation de phase entre ces composés et la phase α-La(IO3)3. Dans un deuxième temps, nous avons utilisé deux dispositifs optiques permettant de mesurer l’efficacité de génération de second harmonique : l’un permettant l’étude de nanocristaux de α-La(IO3)3 individuels et l’autre utilisant un ensemble de nanocristaux en suspension dans un solvant. Ce dernier, basé sur la diffusion Hyper-Rayleigh, nous a permis de quantifier la réponse non-linéaire de nanocristaux α-La(IO3)3 de diamètre 20-50 nm et de déterminer un coefficient non-linéaire < d > de 8 pm.V-1, comparable aux valeurs obtenues pour d’autres nanocristaux harmoniques tels que BaTiO3 ou LiNbO3. Enfin, nous avons montré la possibilité d’incorporer des ions lanthanides tels que Er3+ et Yb3+ dans ces nanocristaux d’iodate de lanthane, conduisant à des nanocristaux de α-La1-x-yYbyErx(IO3)3. Ces nanocristaux sont toujours actifs en génération de second harmonique et émettent simultanément un signal de photoluminescence. Ainsi, pour une excitation dans le proche infra-rouge (800 nm ou 980 nm par exemple), nous avons observé simultanément un signal de second harmonique et de photoluminescence par up-conversion. Nous avons démontré l’intérêt d’un co-dopage Yb3+/Er3+ pour une optimisation du signal d’up-conversion sous une excitation à 980 nm. Ainsi, par un dopage d’ions lanthanides tels que Er3+ et Yb3+, les nanocristaux de α-La(IO3)3 présentent une émission simultanée de génération de second harmonique et de photoluminescence. La combinaison de ces deux propriétés permet d’envisager d’utiliser ces nanocristaux bifonctionnels pour une imagerie par luminescence, technique classique, tout en la couplant avec une imagerie multiphoton, plus coûteuse mais présentant des avantages non-négligeables (rapidité de scans, meilleure sélectivité spatiale, sensibilité à la polarisation). / Medicine is increasingly interested in nanometric systems for the early detection of malignant cells, their treatment or understanding of biological mechanisms. Fluorescent nanoparticles and harmonic nanocrystals with interesting non-linear properties have been studied as contrast agents for biomedical imaging.In this work, we explored a non-centrosymmetric material whose matrix allows a doping of lanthanide ions in order to develop multifunctional probes, i. e. both luminescent and harmonic. We focused on non-centrosymmetric iodate phase: alpha lanthanum iodate, α-La(IO3)3. First, we developed microwave-assisted hydrothermal syntheses to crystallize the alpha phase and produce nano-sized particles (< 100 nm). The presence of many pseudo-polymorphs requires precise control of the synthesis parameters, in particular the synthesis temperature, to obtain exclusively nanoparticles of α-La(IO3)3. The study of different reaction intermediates (La(IO3)3(OH2), La(IO3)2.66(OH)0.33) allowed us to identify a phase transformation between these compounds and the phase α-La(IO3)3. Secondly, we used two optical devices to evaluate the second harmonic generation efficiency of the synthesized α-La(IO3)3 nanocrystals: one set-up allowed us to study individual α-La(IO3)3 nanocrystals and the other used an ensemble of α-La(IO3)3 nanocrystals in suspension in a solvent. The latter, based on Hyper-Rayleigh scattering, quantified the non-linear response of nanocrystals α-La(IO3)3 with a diameter of 20-50 nm and allowed us to determine a non-linear coefficient < d > of 8 pm.V-1, a value comparable to the ones obtained for other harmonic nanocrystals such as BaTiO3 or LiNbO3. Finally, we showed the possibility of incorporating lanthanide ions such as Er3+ and Yb3+ into these lanthanum iodate nanocrystals, leading to α-La1-x-yYbyErx(IO3)3 nanocrystals. These nanocrystals are still active in second harmonic generation and simultaneously emit a photoluminescence signal. Thus, for excitation in the near infrared (800 nm or 980 nm for instance), we simultaneously observed a signal of second harmonic and a photoluminescence signal based on up-conversion processes. We demonstrated the interest of an Yb3+/Er3+ co-doping for an optimization of the up-conversion signal under excitation at 980 nm. Thus, Er3+ and Yb3+-doped nanocrystals of α-La(IO3)3 exhibit simultaneous emission of second harmonic generation and photoluminescence. The combination of these two properties makes it possible to consider using these bifunctional nanocrystals for conventional luminescence imaging, while coupling it with multiphoton imaging, which is more expensive but has significant advantages (scan speed, better spatial selectivity, polarization sensitivity).
Identifer | oai:union.ndltd.org:theses.fr/2019GREAI056 |
Date | 07 October 2019 |
Creators | Regny, Sylvain |
Contributors | Grenoble Alpes, Dantelle, Géraldine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds