Orientador: João Frederico da Costa Azevedo Meyer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:13:08Z (GMT). No. of bitstreams: 1
Miyaoka_TiagoYuzo_M.pdf: 9483350 bytes, checksum: 13a6ce526d2a0eca797c7b2c56f65600 (MD5)
Previous issue date: 2015 / Resumo: Este trabalho trata da modelagem matemática e da simulação computacional de um problema de dinâmica populacional, mais precisamente a interação de um poluente tóxico a duas espécies que competem entre si por espaço e alimento. A modelagem é feita a partir de dispersão e advecção populacional juntamente com o modelo clássico de Lotka-Volterra e reprodução do tipo de Verhulst, mas com um termo inovador para a interação entre poluente e população. Este termo inovador visa a melhoria do modelo a médio e longo prazos, pois tem comportamento assintótico em relação ao tempo. Temos assim um sistema de equações diferenciais parciais não-linear, cuja solução analítica é impossível de ser obtida. Recorremos então a métodos numéricos e simulações computacionais para obter soluções aproximadas. Para isso, utilizamos os métodos de Elementos Finitos (com elementos triangulares de primeira ordem) nas variáveis espaciais e de Diferenças Finitas (mais especificamente, o método de Crank-Nicolson) na temporal, além do método preditor-corretor de Douglas e Dupont para tratar não linearidades, detalhando o procedimento de se obter um software capaz de gerar cenários qualitativamente realistas (os parâmetros utilizados foram estimados). Com o software obtido apresentamos gráficos das soluções aproximadas em cenários hipotéticos distintos, de forma a poder analisar possíveis impactos ambientais causados pela poluição despejada no meio ambiente / Abstract: This work treats the mathematical modeling and computational simulation of a populational dynamics problem, more precisely the interaction of a toxic pollutant in two species which compete with each other for space and food. The modeling is done from populational dispersion and advection together with the classical model of Lotka-Volterra and Verhulst type reproduction, but with a innovative term for the interaction of pollutant and population. This innovative term aims the improvement of the model in the medium and long time, because it has asymptotic behaviour in relation to time. Therefore we have a system of non linear partial differential equations, whose analytical solution is impossible to be obtained. We then appeal to numerical methods and computational simulations to obtain approximated solutions. For this, we use the Finite Elements method (with first order triangular elements) in spatial variables and Finite Differences method (more specifically the Crank-Nicolson method), in addition to the Douglas and Dupont predictor-corrector method to treat non linearities, detailing the process of obtaining a software capable of generating qualitatively realistic scenarios (the parameters used were estimated). With the obtained software we present plots of approximate solutions in different hypothetical scenarios, in order to analyze possible enviromental impacts caused by pollution released into the environment / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307267 |
Date | 26 August 2018 |
Creators | Miyaoka, Tiago Yuzo, 1990- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Meyer, João Frederico da Costa Azevedo, 1947-, Pulino, Petronio, Poletti, Elaine Cristina Catapani |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática Aplicada |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 107 p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds