Return to search

Financial methods for online advertising

Online advertising, a form of advertising that reaches consumers through the World Wide Web, has become a multi-billion dollar industry. Using the state of the art computing technologies, online auctions have become an important sales mechanism for automating transactions in online advertising markets, where advertisement (shortly ad) inventories, such as impressions or clicks, are able to be auctioned off in milliseconds after they are generated by online users. However, with providing non-guaranteed deliveries, the current auction mechanisms have a number of limitations including: the uncertainty in the winning payment prices for buyers; the volatility in the seller’s revenue; and the weak loyalty between buyer and seller. To address these issues, this thesis explores the methods and techniques from finance to evaluate and allocate ad inventories over time and to design new sales models. Finance, as a sub-field of microeconomics, studies how individuals and organisations make decisions regarding the allocation of resources over time as well as the handling of risk. Therefore, we believe that financial methods can be used to provide novel solutions to the non-guaranteed delivery problem in online advertising. This thesis has three major contributions. We first study an optimal dynamic model for unifying programmatic guarantee and real-time bidding in display advertising. This study solves the problem of algorithmic pricing and allocation of guaranteed contracts. We then propose a multi-keyword multi-click ad option. This work discusses a flexible way of guaranteed deliveries in the sponsored search context, and it’s evaluation is under the no arbitrage principle and is based on the assumption that the underlying winning payment prices of candidate keywords for specific positions follow a geometric Brownian motion. However, according to our data analysis and other previous research, the same underlying assumption is not valid empirically for display ads. We therefore study a lattice framework to price an ad option based on a stochastic volatility underlying model. This research extends the usage of ad options to display advertising in a more general situation.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:639685
Date January 2015
CreatorsChen, B.
PublisherUniversity College London (University of London)
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://discovery.ucl.ac.uk/1461143/

Page generated in 0.0023 seconds