Since 2008, more than half of the world population lives in cities. To cope with this rapid urbanization in a sustainable manner, transit systems all around the world are likely to grow. By studying 33 networks in the world, this thesis identifies the properties and effects of metro network designs by using a graph theory approach.
After the literature review, a new methodology was introduced to translate networks into graphs; it notably accounts for various transit specificities (e.g., presence of lines). Metro networks were then characterised according to their State, Form, and Structure; where State relates to the development phase of metros; Form investigates the link between metros and the built environment; Structure examines the intrinsic properties of metros, by notably looking at their connectivity. Subsequently, the complexity and robustness of metros were studied; metros were found to possess scale-free and small-world features although showing atypical topologies; robustness emphasizes on the presence of alternative paths. Three network design indicators (coverage, directness and connectivity) were then related to ridership (annual boardings per capita), and positive relations were observed, which suggests that network design plays an important role in their success. Finally, these concepts were applied to the Toronto metro plans announced by the Toronto regional transportation authority, Metrolinx; it was found that the grid-pattern nature of the plans could hinder the success of the metro; seven possible improvements were suggested.
Overall, the topology of metro networks can play a key role in their success. The concepts presented here can particularly be useful to transit planners; they should also be used along with conventional planning techniques. New transit projects could benefit greatly from an analysis of their network designs, which in turn may play a relevant role in the global endeavour for sustainability.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/26164 |
Date | 15 February 2011 |
Creators | Derrible, Sybil |
Contributors | Kennedy, Christopher A. |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0502 seconds