Return to search

Liquid Phase Exfoliation of Tungsten Diselenide for Environmental Gas and Breath Sensing

In this work, we performed an experimental analysis using a two-dimensional semiconducting transition metal dichalcogenide (TMD), specifically tungsten diselenide (WSe2), for gas sensor applications. Our method entailed building a chemically liquid exfoliated WSe2 gas sensing device with gold (Au) electrodes to measure its reaction and sensitivity to environmental gasses such as CO2 and N2. The 2D thin film was created through a solution processing method and electrically coupled in a two-terminal configuration; photonic curing system along with the hot plate annealing process was used on the thin film for rapid annealing, enhancing particle connectivity, stable crystal structure, and increasing overall electrical conductivity. The inkjet printing technology is used to explore the potential of the 2D thin film fabrication process that defines a well-controlled and scalable additive manufacturing process at the nano level that makes it possible to develop next-generation flexible devices. The additive nano-manufacturing process allowed us to establish the film's structure and chemical properties before measuring the electrical characteristics of the films when exposed to CO2 and N2 gases at room temperature. To explore and validate the sensitivity to human interaction with the gas-sensing device, we carried out further experiments with direct exposure to human breath in an open environmental space which shows a promising landmark for developing a next-generation flexible breath-sensing device.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2332655
Date05 1900
CreatorsZaman, Ashique
ContributorsKaul, Anupama B., Mukherjee, Sundeep, Meckes, Brian
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Zaman, Ashique, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.002 seconds