Im Rahmen der vorliegenden Arbeit wurden anorganische, organische und biologische
Makromoleküle und Nanomaterialen mit elektrochemischen und mikrogravimetrischen
Methoden untersucht. Neue Peroxo-Zr(IV)/Hf(IV)-Polyoxometallate konnten erstmals elektrochemisch charakterisiert und ihr Potential als Oxidations- und Elektrokatalysatoren demonstriert werden. In cyclovoltammetrischen Messungen der Polyoxometallate (POMs) konnten die Peroxofunktionen anhand ihres irreversiblen Reduktionsstroms identifiziert werden, während die POM-Liganden den typischen reversiblen Strom ihrer W(VI/V)-
Redoxsysteme zeigten. Die zugehörigen Ladungsmengen der kathodischen Halbreaktionen
wurden mittels Coulometrie verifiziert. Die Sauerstofftransferaktivitäten der Peroxo-Zr/Hf-Polyoxometallate auf die Sulfid- bzw. Sulfoxidfunktion der organischen Modellsubstrate Methionin und Methioninoxid konnten mittels Cyclovoltammetrie und hydrodynamischer Voltammetrie mit einer rotierenden Scheibenelektrode über den abnehmenden kathodischen Stroms der Peroxofunktionen überwacht werden. Mittels CV- und UV/VIS-pH-Titrationen wurden zwei POM-Säurekonstanten ermittelt. Neue Preyssler-Polyoxometallat-Multilayer
wurden nach dem Layer-by-Layer-Verfahren auf einer ITO-Quarzglasoberfläche adsorbiert
und cyclovoltammetrisch charakterisiert. Es gelang der Herstellung der ersten
Polyoxometallat-Viologendendrimer- und Polyoxometallat-Trimethylendipyridiniumdendrimer-
Multilayer. In den Cyclovoltammogrammen der Multilayer fiel die Zuordnung der
Wellen zu den einzelnen Redoxsystemen von Polyanion- und Polykationkomponente
aufgrund von Überlagerung der Redoxsignale und deren starke gegenseitige Beeinflussung
schwer. Mittels numerischer Integration konnten aus den Multilayer-Cyclovoltammogrammserien die geflossenen Ladungsmengen und Oberflächenbedeckungen berechnet werden. Ihr linearer Anstieg zeigt den linearen Stoffmengenzuwachs während der sukzessiven Adsorption der Polyanion-Polykation-Doppelschichten sowie die elektrochemische Zugänglichkeit aller
Redoxzentren in den Mulitlayerverbundmaterialien. Die rekombinante Untereinheit C der VATPase
wurde auf einer SAM-modifizierten Quarzkristallmikrowaage (QCM) spezifisch
immobilisiert und mikrogravimetrisch detektiert. Die spezifische Bindung der Untereinheit C an die binäre Alkanthiolat-Matrix erfolgte über die Ni2+-komplexierte NTA-Funktion von Thiol 1, bei gleichzeitiger Unterdrückung der unspezifischen Proteinadsorption durch die
Tetraethylenglykolfunktion von Thiol 2. Als Grund für die mit der QCM nicht nachweisbare
biochemische Wechselwirkung von Untereinheit C und G-Aktin wurde eine sterische
Blockade der Aktin-Bindungsstellen der auf der Matrixoberfläche immobilisierten
Untereinheit C angenommen.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2012122010591 |
Date | 20 December 2012 |
Creators | Oelrich, Holger |
Contributors | Prof. Dr. Lorenz Walder, Prof. Dr. Hans Reuter |
Source Sets | Universität Osnabrück |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/zip |
Rights | Namensnennung-NichtKommerziell-KeineBearbeitung 3.0 Unported, http://creativecommons.org/licenses/by-nc-nd/3.0/ |
Page generated in 0.0025 seconds