3D textile performs offer a high potential to increase mechanical properties of composites and they can reduce the production steps and costs as well. The variety of woven structures is enormous. The algorithms based on the conventional weaving notation can only represent the possible woven structures in a limited way. Within the scope of this dissertation, a new weaving notation was developed in order to analyze the multilayer woven structures analytically. Technological solutions were developed in order to guarantee a reproducible preform production with commingled hybrid yarns. Terry weaving technique can be utilized to create vertical connections on carrier fabrics, which makes it suitable for the development of complex profiles. A double rapier weaving machine was modified with electronically controlled terry weaving and pneumatic warp yarn pull-back systems. Various spacer fabrics and 3D profiles were developed. A linear take-up system is developed to assure reproducible preform production with a minimum material damage. Integrated cutting and laying mechanisms on the take-up system provides a high level of automation.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25664 |
Date | 04 July 2011 |
Creators | Torun, Ahmet Refah |
Contributors | Cherif, Chokri, Ficker, Frank, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds