Return to search

Le centre Galactique aux très hautes énergies : modélisation de l’émission diffuse et premiers éléments d’analyse spectro-morphologique / The galactic center to vers high energies : diffuse emission modeling and first elements of spectromorphological analysis

Le centre Galactique (GC) est une région très riche et complexe. Le taux de supernovae (SN) associé à la formation d'étoiles massives y est très élevée et devrait créer une injection continue de rayons cosmiques (CRs) dans le GC à travers les chocs qu'elles produisent. Cette région abrite également un trou noir supermassif (SMBH) de $4 \times 10^6 \, \rm{M_{\odot}}$, nommé Sgr A*. De nombreux arguments ont permis de montrer que le SMBH pouvait accélérer des particules à très haute énergie (VHE); son activité actuelle et passée pourrait donc également contribuer à la population de CRs. En 2006, la collaboration H.E.S.S. a révélé la présence d'une émission diffuse à VHE dans les 100 pc centraux de la Galaxie, très corrélée à la distribution de matière moléculaire répartie dans la zone moléculaire centrale (CMZ). Une partie importante de cette émission a donc très probablement une origine hadronique mais celle-ci reste toujours inconnue. Nous présentons une nouvelle analyse spectrale et morphologique détaillée de la région en utilisant 10 ans de prise de données de H.E.S.S. ainsi qu’une modélisation de l'émission $\gamma$ induite par les SNe. Nous étudions l'impact de la distribution temporelle et spatiale des SNe dans le CMZ sur la morphologie et le spectre de l'émission: nous construisons un model 3D d'injection de CRs à VHE et d'une propagation diffusive dans la région avec une distribution de gaz réaliste. La contribution des SNe ne peut pas être négligée. Nous montrons qu’un profil piqué de rayon $\gamma$ ainsi qu’un excès de CRs vers le GC peuvent être obtenus en utilisant une distribution spatiale réaliste de SNe prenant en compte les amas d'étoiles massives centraux. La morphologie de l'émission est très dépendante de l'énergie dans ce scénario. Le profil de densité de CRs peut également être reproduit avec une injection stationnaire unique au centre par Sgr A* mais cela implique alors une morphologie stable en énergie. L'utilisation d'une analyse 3D est donc nécessaire pour distinguer les modèles. Nous présentons les premiers résultats de cette analyse que nous avons développé dans la librairie Gammapy afin d'ajuster simultanément un spectre et une morphologie sur des données. Avec la prochaine génération d'instruments comme le Cherenkov Telescope Array, les observations de régions avec une morphologie complexe, avec une émission diffuse ou de multiples sources, vont devenir de plus en plus nombreuses. Elles nécessitent donc également le développement de cette technique. Nous détaillons les premières validations de cette méthode appliquée sur des sources ponctuelles avec un outil Monte Carlo. Pour l’émission diffuse, nous présentons le nouveau spectre obtenu en utilisant une méthode que nous avons développée pour l’extraction spectrale 1D classique. Nous réalisons par ailleurs une analyse morphologique dans différentes bandes en énergie indépendantes en utilisant de nouveaux modèles spatiaux. Pour l'instant, aucune variation significative n'est détectée mais des observations supplémentaires sont nécessaires ainsi qu'une vraie analyse 3D de la région du GC pour pouvoir donner une conclusion définitive. Les observations de CTA permettront de donner des réponses précises à ces questions. / The Galactic center (GC) is a very rich and complex astrophysical region. The high supernovae (SN) rate associated with the strong massive star formation should create a sustained cosmic rays (CR) injection in the GC via the shocks they produce. This region also harbors a Super-Massive Black Hole (SMBH) of $4 \times 10^6 \, \rm{M_{\odot}}$, named Sgr A*. Since it has been argued that the SMBH might also accelerate particles up to very high energies (VHE), its current and past activity could contribute to the CR population. In 2006, the H.E.S.S. collaboration revealed the presence of a VHE diffuse emission in the inner 100 pc of the Galaxy in close correlation with the molecular matter spread in the central molecular zone (CMZ). A major part of this emission is thus certainly of hadronic origin but it still remains mysterious. We report a new detailed spectral and morphological analysis of this region using 10 years of H.E.S.S. observations as well as a detailed modelling of the $\gamma$-ray emission induced by the SNe. We study the impact of the spatial and temporal distribution of SNe in the CMZ on the VHE emission morphology and spectrum: we built a 3D model of VHE CR injection and diffusive propagation with a realistic gas distribution. The contribution of SNe can not be neglected. We show that a peaked $\gamma$-ray profile and CR excess towards the GC, can be obtained using realistic SN spatial distribution taking into account the central massive star clusters. A strong dependence on the morphology of the emission with the energy is expected in this scenario. The CR density profile can also be reproduced by a unique stationary injection at the center by Sgr A* but it implies a stable morphology across the energy range. To distinguish the models, we need a 3D analysis. We present the first results of this analysis that we started to design in the software Gammapy to simultaneously fit a spectral and morphological model to the data. The observations of complex morphological regions with diffuse emission or multiple sources will become more and more numerous with the next generation instruments such as the Cherenkov Telescope Array. They will also require the development of this technique. We detail the first validations of this method on point sources using a Monte Carlo tool. For the ridge emission, we report the new spectrum using a method that we developed for the classical spectral fitting necessary for faint emission. By using new spatial templates to describe the complexity of the diffuse emission, we perform a morphological analysis in different energy bands independently. No significant variation is found but more observations are needed to give a conclusive statement as well as a real 3D analysis in the GC region. The observations of CTA will allow to give precise answers to these questions.

Identiferoai:union.ndltd.org:theses.fr/2017USPCC213
Date27 September 2017
CreatorsJouvin, Lea
ContributorsSorbonne Paris Cité, Terrier, Régis, Lemière, Anne
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0027 seconds