Return to search

3D Reconstruction of Sorghum Plants for High-Throughput Phenotyping

<p>High-throughput phenotyping is a recent multidisciplinary research field that investigates the accurate acquisition and analysis of multidimensional phenotypes on large and diverse populations of plants. High-throughput phenotyping is at the crossroad between plant biology and computer vision, and profits from advances in plant modeling, plant reconstruction, and plant structure understanding. So far, most of the data analysis is done on 2D images, yet plants are inherently 3D shapes, and measurements made in 2D can be biased. For example, leaf angles change when they are reprojected in 2D images. Although some research works investigate the 3D reconstruction of plants, high-throughput phenotyping is still limited in its ability to automatically measure a large population of plants in 3D. In fact, plants are difficult to 3D reconstruct because they look self-similar, feature highly irregular geometries, and self-occlusion. </p>
<p><br></p>
<p>In this dissertation, we investigate the research question \textit{whether we can design and validate high-throughput phenotyping algorithms that take advantage of the 3D nature of the plants to outperform existing algorithms based on 2D images?} We present four contributions that address this question. First, we show a voxel 3D reconstruction pipeline and measure phenotypic traits related to canopy architecture over a population of 351 sorghum plants. Second, we show a machine learning-based skeletonization and segmentation algorithm for sorghum plants, which automatically learns from a set of 100 manually annotated plants. Third, we estimate individual leaf angles over a population of 1,098 sorghum plants. Finally, we present a sparse 3D reconstruction algorithm that can triangulate thousands of points of interest from up to 15 views without correspondences, even in the presence of noise and occlusion. We show that our approach outperforms single-view methods by using multiple views for sorghum leaf counting.</p>
<p><br></p>
<p>Progress made towards improving high-throughput phenotyping has the potential to benefit society with a better adaptation of crops to climate change, which will limit food insecurity in the world.</p>

  1. 10.25394/pgs.21652331.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/21652331
Date01 December 2022
CreatorsMathieu Gaillard (14199137)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/3D_Reconstruction_of_Sorghum_Plants_for_High-Throughput_Phenotyping/21652331

Page generated in 0.0094 seconds